Skip to main content
Log in

Glycosphingolipids as Potential Diagnostic Markers and/or Antigens in Neurological Disorders

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glycosphingolipids are most abundant in the nervous system within which there are developmental, regional, structural and cellular differences regarding their composition. They are shedded to the cerebrospinal fluid and thus potential markers for pathogenic alterations in the brain, such as developmental abnormalities, demyelination, gliosis, neuronal cell destruction. The glycosphingolipids have also been found to be antigens in autoimmune processes involving the nervous system, in particular in peripheral neuropathies like Guillain Barré syndrome, multifocal motor neuropathy etc. The immune response might have been triggered by infectious agents with an antigen epitope which mimic the glycosphingolipid or by a primary nerve tissue damage leading to release of glycosphingolipids. There is a series of support for a clinical significance of cerebrospinal fluid glycosphingolipid determinations and the presence of anti-glycosphingolipid antibodies but this has to be further explored. This paper is a mini review of the state of the art and discuss methodological aspects and improvements that might help to explore the relevance of glycosphingolipids in neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hakomori S.-I., and Igarashi Y. 1995. Functional role of glycosphingolipids in cell recognition and signalling. J Biochem. 188: 1091–1103.

    Google Scholar 

  2. van der Bijl, P., Lopes-Cardozo, M., and van Meer, G. 1996. Sorting of newly synthesized galactosphingolipids to the two surface domains of epithelial cells. J Cell Biology. 132:813–821.

    Google Scholar 

  3. Suzuki, K. 1965. The pattern of mammalian brain gangliosides—III regional and developmental changes.

  4. Svennerholm, L., Boström, K., Fredman, P., Månsson, J.-E., Rosengren, B., and Rynmark, B.-M. 1989. Human brain ganglioside: developmental changes from early fetal stage to advanced age. Biochim. Biophys. Acta. 1005:109–117.

    Google Scholar 

  5. Svennerholm, L. Boström, K., Fredman, P., Jungbjer, B., Lekman, A., Månsson, J.-E., and Rynmark, B.-M. 1994. Gangliosides and allied glycosphingolipids in human peripheral nerve. Biochim. Biophys. Acta. 1214:115–123.

    Google Scholar 

  6. Hansson, H.-A., Holmgren, J., and Svennerholm, L. 1977. Ultrastructural localization of cell membrane GM1 ganglioside by cholera toxin. Proc. Natl. Acad. Sci. (USA). 74:3782–3786.

    Google Scholar 

  7. Kotani, M., Kawashima, I., Ozawa, H., Terashima, T., and Tai, T. 1993. Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies. Glycobiology. 3:137–146.

    Google Scholar 

  8. Kawai, K., Kuroda, S., Watarai, S., Takahashi, H., and Ikuta, F. 1994. Occurrence of GD3 ganglioside in reactive astrocytes—an immunocytochemical study in the rat brain. Neurosci. Lett. 174: 225–227.

    Google Scholar 

  9. Fredman, P. 1994. Gangliosides associated with primary brain tumors and their expression in cell lines established from these tumors. Brain Res. 101:225–240.

    Google Scholar 

  10. Wolswijk, G. 1995. Strongly GD3+ cells in the developing and adult rat cerebellum belong to the microglial lineage rather than to the oligodendrocyte lineage. Glia. 13:13–26.

    Google Scholar 

  11. Fredman, P., Wikstrand, C. J., Månsson, J.-E., Bigner, S. H., Rasheed, A., Svennerholm, L., and Bigner, D. D. 1996. In vivo growth of the human glioma cell line suppress the expression of ganglioside GM2 and favour the expression of the human glioma associated 3′-isoLM1 and 3′6′-isoLD1. Glycoconjugate J. 13:391–399.

    Google Scholar 

  12. Buschard K, K. Josefsen, T. Horn, K. Aaen, H. Persson, and P. Fredman. 1996. Presence of sulphatide (3′-sulphogalactosylcer-amide) in pericytes in the choroid layer of the eye: sharing of this glycolipid antigen with islets of Langerhans. Diabetologia. 39: 658–666.

    Google Scholar 

  13. Coteze, T., Fujita, N., Dupree, J., Shi, R., Blight, A., Suzuki, K., Suzuki, K., and Popko, B. 1996. Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86:1–20.

    Google Scholar 

  14. Ledeen, R., and Yu, R. 1972. Gangliosides of CSF and plasma: their relation to the nervous system. Adv. Exp. Med. Biol. 19:77–93.

    Google Scholar 

  15. Nagai, Y., Kanfer, J. N., and Tourtellotte, W. W. 1973. Preliminary observations of gangliosides of normal and multiple sclerosis cerebrospinal fluid. Neurology. 23:945–948.

    Google Scholar 

  16. Davidsson, P., Fredman, P., and Svennerholm, L. 1989. Gangliosides and sulphatide in human cerebrospinal fluid: Quantitation with immunoaffinity techniques. J. Chromatogr. 496:279–289.

    Google Scholar 

  17. Doljanski, F., and Kapeller, M. 1976. Cell surface shedding: the phenomenon and its possible significance. J. Theor. Biol. 62:253–270.

    Google Scholar 

  18. Pilz, H. 1970. Die Lipide des normalen und pathologished Liquor cerebrospinalis. Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  19. Tibbling, G., Link, H., and Öhman, S. 1977. Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. J. Clin. Lab. Invest. 37:385–390.

    Google Scholar 

  20. Fredman, P., Wallin, A., Blennow, K., Davidsson, P., Gottfries, C. G., and Svennerholm, L. 1992. Sulfatide as a biochemical marker in cerebrospinal fluid of patients with vascular dementia. Acta. Neurol. Scand. 85:103–106.

    Google Scholar 

  21. Portoukalian, J., Zwingelstein, G., Abdul-Malak, N., and Doré, J.-F. 1978. Alteration of gangliosides in plasma and red cells of human bearing melanoma tumors. Biochem. Biophys. Res. Commun. 85:916–920.

    Google Scholar 

  22. Senn, H.-J., Orth, M., Fitzke, E., Wieland, H., and Gerok, W. 1989. Gangliosides in normal human serum. Concentration, pattern and transport by lipoproteins. Eur. J. Biochem. 181:657–662.

    Google Scholar 

  23. Håkansson, L., Fredman, P., and Svennerholm, L. 1985. Gangliosides in serum immune complexes from tumor-bearing patients. J. Biochem. 98:843–849.

    Google Scholar 

  24. Trbojevic-Cepe, M., Kracun, I., Jusic, A., and Pavlicek, I. 1991. Gangliosides of human cerebrospinal fluid in various neurologic diseases. J. Neurol. Sci. 105:192–199.

    Google Scholar 

  25. Blennow, K., Davidsson, P., Wallin, A., Fredman, P., Gottfries, C.-G., Karlsson, I., Månsson, J.-E., and Svennerholm, L. 1991. Gangliosides in cerebrospinal fluid in ‘Probable Alzheimers's disease’. Arch. Neurol. 48:1032–1035.

    Google Scholar 

  26. Davidsson, P., Fredman, P., Månsson J.-E., and Svennerholm, L. 1991. Determination of gangliosides and sulfatide in human cerebrospinal fluid with a microimmunoaffinity technique. Clin. Chim. Acta. 197:105–116.

    Google Scholar 

  27. Hirabayashi, Y., Koketsu, K., Higashi, H., Suzuki, Y., Matsumoto, M., Sugimoto, M., and Ogawa, T. 1986. Sensitive enzyme-immunostaining and densitometric determination of ganglio-series gangliosides on thin-layer plate: pmol detection of gangliosides in cerebrospinal fluid. Biochim. Biophys. Acta. 876:178–182.

    Google Scholar 

  28. Yamanaka, T., Hirabayashi, Y., Koketsu, K., Higashi, H., and Matsumoto, M. 1986. Highly sensitive analysis of gangliosides in human cerebrospinal fluid with neurological diseases. J. Exp. Med. 57:131–135.

    Google Scholar 

  29. Svennerholm, L. 1964. The distribution of lipids in the human nervous system. I. Analytical procedure. Lipids of fetal and newborn brain. J. Neurochem. 11:839–853.

    Google Scholar 

  30. Yusuf, H. K., Merat, A., and Dickerson, J. W. T. 1977. Effect of development on the gangliosides of human brain. J. Neurochem. 28:1299–1304.

    Google Scholar 

  31. Tettamanti, G. 1971. Brain gangliosides in development. Adv. Exper. Med. Biol. 13:75–89.

    Google Scholar 

  32. Vanier, M., Holm, M., Ohman, R., and Svennerholm, L. 1971. Developmental profiles of gangliosides in human and rat brain. J. Neurochem. 18:581–592.

    Google Scholar 

  33. Goldman, J. E., Hirano, M., Yu, R. K., and Seyfried, T. N. 1984. GD3 ganglioside is a glycolipid characteristic of immature neuroectoderman cells. J. Neurochem. 7:179–192.

    Google Scholar 

  34. Goldman, J. E., and Vaysse, P. J.-J. 1991. Tracing glial lineages in the mammalian forebrain. Glia. 4:149–156.

    Google Scholar 

  35. Skaper, S. D., and Varon, S. 1985. Ganglioside GM1 overcomes serum inhibition of neuritic outgrowth. Int. J. Devel. Neurosc. 3: 187–198.

    Google Scholar 

  36. Schengrund, C.-A. 1990. The role(s) of gangliosides in neuronal differentiation and repair: A perspective. Brain Research Bulletin. 24:131–141.

    Google Scholar 

  37. Yates, A. J. 1986. Gangliosides in the nervous system during development and regeneration. Neurochem. Pathol. 5:309–329.

    Google Scholar 

  38. Izumi, T., Ogawa, T., Koizumi, H., and Fukuyama, Y. 1993. Normal developmental profiles of CSF gangliotetraose-series gangliosides from neonatal period to adolescence. Pediatr. Neurol. 9: 297–300.

    Google Scholar 

  39. Lekman, A., Skjeldal, O., Sponheim, O., and Svennerholm, L. 1995. Gangliosides in children with autism. Acta. Pœdiatr. 84: 787–790.

    Google Scholar 

  40. Nordin, V., Lekman, A., Johansson, M., Fredman, P., and Gillberg, C. 1996. Gangliosides in cerebrospinal fluid in children with autism spectrum disorders. Submitted.

  41. Izumi, T., Ogawa, T., Koizumi, H., and Fukuyama, Y. 1993. Low levels of CSF gangliotetraose-series gangliosides in West syndrome: implication of brain maturation disturbance. Padiatr. Neurol. 9:293–6.

    Google Scholar 

  42. Sandhoff, K., and Conzelmann, E. 1984. The biochemical basis of gangliosidosis. Neuropediatrics. 15:85–92.

    Google Scholar 

  43. Pullarkart, R. K., Reha, H., and Beratis, N. G. 1981. Accumulation of GM2 ganglioside in cerebrospinal fluid of a patient with the variant AB of infantile GM2 gangliosidosis. Pediatrics. 68:106–108.

    Google Scholar 

  44. Kotagal, S., Wenger, D. A., Gomez, C., and Horenstein, S. 1986. AB variant GM2 gangliosidosis: cerebrospinal fluid and neuropathological characteristics. Neurology. 36:438–440.

    Google Scholar 

  45. Fredman, P., Blennow, K., Wallin, A., Gottfries, C. G., and Svennerholm, L. 1993. Gangliosides and sulfatide in CSF—Biological markers for Alzheimer's disease and vascular dementia. Pages 400–403, in Felgenhauer, K., Holzgraefe, M., and Prange, H. W. (eds), CNS Barriers and Modern CSF Diagnostics, VCH Weinheim, New York.

    Google Scholar 

  46. Gisslén, M., Fredman, P., Norkrans, G., and Hagberg, L. 1996. Elevated cerebrospinal fluid sulfatide concentrations as a sign of increased metabolic turnover of myelin in HIV type I infection. AIDS. Res. Human Retrovir. 12:149–155.

    Google Scholar 

  47. Gisslén, M., Hagberg, L., Norkrans, G., Lekman, A., and Fredman, P. 1996. Increased cerebrospinal fluid ganglioside GM1 concentrations indicating neuronal involvement in all stages of HIV-1 infection. J. Neurovirol. In press.

  48. Lekman, A., and Fredman, P. 1996. A new procedure to determine ganglioside GD3, a potential glial cell activation marker in cerebrospinal fluid. In preparation.

  49. Tarvonen-Schröder, S., Blennow, K., Lekman, A., Fredman, P., Räihä, I., and Sourander, L. 1996. Gangliosides and sulfatide in cerebrospinal fluid in leukoaraiosis. J. Neurotrans. In press.

  50. Kellaway, P., Hrachovy, R. A., Frost, J. D., Jr., and Zion, T. 1979. Precise characterization and quantification of infantile spasms. Ann. Neurol. 6:214–218.

    Google Scholar 

  51. Gomez, M. R., and Klass, D. W. 1983. Epilepsies of infancy and childhood. Ann. Neurol. 13:113–124.

    Google Scholar 

  52. Lekman, A., Hagberg, B., and Svennerholm, L. 1996. Gangliosides for early differential diagnosis between Rett syndrome and infantile neuronal ceroid lipofuscinosis. In preparation.

  53. Gleeson, P. A. 1994. Glycoconjugates in autoimmunity. Biochim. Biophys. Acta. 1197:237–255.

    Google Scholar 

  54. Ilyas, A. A., Quarles, R. H., MacIntosh, T. D., Dobersen, M. J., Dalakas, M. C., and Bray, R. O. 1984. IgM in a human neuropathy related to paraproteinaemia binds to a carbohydrate determinant in the myelin-associated glycoprotein and to a ganglioside. Proc. Natl. Acad. Sci. 81:1225–1229.

    Google Scholar 

  55. Chou, D. K. H., Ilyas, A. A., Evans, J. E., Costello, C., Quarles, R. H., and Jungalwala, F. B. 1986. Structure of sulfated-glucoronyl glycolipids in the nervous system reacting with HNK-1 antibody and some IgM paraproteins in neuropathy. J. Biol. Chem. 261:11717–117725.

    Google Scholar 

  56. Fredman, P., Lycke, J., Andersen, O., Vrethem, M., Ernerudh, J., and Svennerholm L. 1993. Peripheral neuropathy associated with monoclonal IgM antibody glycolipids with a terminal glucuronyl-3-sulfate epitope. J. Neurology 240:381–387.

    Google Scholar 

  57. Quarles, R. H. 1984. Myelin-associated glycoprotein in development and disease. Developmental Neurosci. 6:285–303.

    Google Scholar 

  58. Hughes, R. A. C. 1994. Inflammatory neuropathies. Baillière's Clinical Neurology, 3:45–72.

    Google Scholar 

  59. Willison, H. J. 1994. Antiglycolipid antibodies in peripheral neuropathy: fact or fiction. J. Neurol. Neurosurg. Psychiatry. 57: 1303–1307.

    Google Scholar 

  60. O'Leary, C., and Willison, H. J. 1995. Immunological investigation. Curr Opinion in Neurology. 8:349–353.

    Google Scholar 

  61. Saida, T., Saida, K., Lisak, R. P., Brown, M. J., Silberberg, D. H., and Asbury A. K. 1982. In vivo demyelinating activity of sera from patients with Guillain-Barré syndrome. Ann. Neurol. 11:69–75.

    Google Scholar 

  62. Hays, A. P., Latov, N., Takatsu, M., and Sherman, W. H. 1987. Experimental demyelination of nerve induced by serum from patients with neuropathy and an anti-MAG IgM-M protein. Neurology. 37:242–56.

    Google Scholar 

  63. Tatum, A. H. 1993. Experimental paraproteinaemic neuropathy, demyelination by passive transfer of human IgM anti-myelin associated glycoprotein antibody. Ann. Neurol. 33:502–506.

    Google Scholar 

  64. Svennerholm, L., and Fredman, P. 1990. Antibody detection in Guillain-Barré syndrome. Ann. Neurol. 27:36–40.

    Google Scholar 

  65. Fredman, P., Vedeler, C. A., Nyland, H., Aarli, J. A., and Svennerholm, L. 1991. Antibodies in sera from patients with inflammatory demyelinating polyradiculo neuropathy react with ganglioside LM1 and sulfatide of peripheral nerve myelin. J. Neurol. 238:75–79.

    Google Scholar 

  66. Kaldor, J., and Speed, B. R. 1984. Guillain Barré syndrome and Campylobacter jejuni: a serological study. Br Med J. 288:1867–1870.

    Google Scholar 

  67. Yuki, N., Yoshino, H., Sato, S., and Miyatake T. 1990. Acute axonal polyneuropathy associated with anti-GM1 antibodies following Campylobacter enteritis. Neurology 40:1900–1902.

    Google Scholar 

  68. Ho, T. W., Mishu, B., Li, C. Y., Gao, C. Y., Cornblath, D. R., Griffin, J. W., Asbury, A. K., Blaser, M. J., and McKahnn, G. 1995. Guillain-Barré syndrome in northern China. Relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain. 118:597–605.

    Google Scholar 

  69. Chiba, A., Kusunoki, S., Shimizu, T., and Kanazawa, I. 1992. Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller Fisher syndrom. Ann Neurol. 31:677–679.

    Google Scholar 

  70. Willison, H. J., Veitch, J., Paterson, G., and Kennedy, P. G. E. 1993. Miller Fisher syndrome is associated with serum antibodies to GQ1b ganglioside. J. Neurol Neurosurg. Psychiat. 56:204–206.

    Google Scholar 

  71. Dalakas, M. C., and Quarles, R. H. 1996. Autoimmune ataxic neuropathies (sensory ganglionopathies): are glycolipid the responsible antigens. Ann. Neurol. 39:419–422.

    Google Scholar 

  72. Buschard, K., Josefsen, K., Horn, T., and Fredman, P. 1993. Sulphatide and sulphatide antibodies in insulin-dependent diabetes mellitus. Lancet. 342:840.

    Google Scholar 

  73. Pestronk, A., Adams, R. N., Kuncl, R. W., Drachman, D. B., Clawson, L. L., and Cornblath, D. R. 1989. Differential effects of prednisone and cyclophosphamide on autoantibodies in human neuromucular disorders. Neurology. 39:628–633.

    Google Scholar 

  74. Chaudry, V., Corse, A. M., Corblath, D. R., Kuncl, R. W., Drachman, D. B., Freimer, M. L., Miller, R. G., and Griffin, J. W. 1993. Multifocal motor neuropathy: response to human immune globulin. Ann. Neurol. 33:237–242.

    Google Scholar 

  75. Sadiq, S. A., Thomas, F. P., and Kilidireas, K. 1990. The spectrum of neurological disease associated with anti-GM1 antibodies. Neurology. 40:1067–1072.

    Google Scholar 

  76. Kornberg, A. J., and Pestronk, A. 1994. The clinical and diagnostic role of anti-GM1 antibody testing. Muscle Nerve. 17:100–104.

    Google Scholar 

  77. Weller, M., Stevens, A., Sommer, N., Dichgans, J., Kappler, B., and Wiethölter, H. 1992. Ganglioside antibodies: a lack of diagnostic specificity and clinical utility? J Neurol. 239:455–459.

    Google Scholar 

  78. Parry, G. J. 1994. Antiganglioside antibodies do not necessarily play a role in multifocal neuropathy. Muscle Nerve. 17:97–99.

    Google Scholar 

  79. Taylor, B. V., Gross, L., and Windebank, A. J. 1996. The sensitivity and specificity of anti-GM1 antibody testing. Neurology. 47: 951–955.

    Google Scholar 

  80. Stevens, A., Weller, M., and Wiethölter, H. 1993. A characteristic ganglioside antibody pattern in the CSF of patients with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psych. 56:361–364.

    Google Scholar 

  81. Iniguez, C., Jinénez-Escrig, A., Gobernado, J. N., Nocito, M., and Gonzalez-Porque, P. 1995. Antiganglioside antibodie in the CSF of patients with motor neuron diseases and Guillain-Barré syndrome. J. Neurol. Neurosurg. Psychiatry. 58:519–520.

    Google Scholar 

  82. de Gasperi, R., Sosa, M. A. G., Patarca, R., Battistini, S., Lamoreux, M. R., Ragha van, S., Kowall, N. W., Harrnington Smith, K., Pletcher M.-A., and Kolodny, E. H. 1996. Intrathecal synthesis of anti-sulfatide IgG is associated with peripheral nerve disease in acquired immunodeficiency syndrome. Aids Res. Hum. Retrovirus. 12:205–209.

    Google Scholar 

  83. Marcus, D. M., Latov, N., Hsi, B. P., and Gillard, B. K. 1989. Measurement and significance of antibodies against GM1 ganglioside. J Neuroimmunol. 25:255–259.

    Google Scholar 

  84. Zielasek, J., Ritter, G., Magi, S., Hartung, H. P., and Toyka, K. V. 1994. A comparative trial of anti-glycoconjugate antibody assays: IgM antibodies to GM1, J. Neurol. 241:475–480.

    Google Scholar 

  85. Ravindrath, M. H., Ravindrath, R. M. H., Morton, D. L., and Graves M. C. 1994. Factors affecting the fine specificity and sensitivity of serum antiganglioside antibodies in ELISA. J. Neuroimmunol. Meth. 169:257–272.

    Google Scholar 

  86. Gregson, N. A., Koblar, S., and Hughes, R. A. C. 1993. Antibodies to gangliosides in Guillain-Barré syndrome: specificity and clinical features. QJ Med. 86:111–117.

    Google Scholar 

  87. Haas, D. C., and Tatum, A. H. 1988. Plasmapheresis alleviate neuropathy accompanying IgM anti-MAG paraproteinemia. Ann. Neurol. 23:394–396.

    Google Scholar 

  88. Harvey, G. K., Toyka, K. V., Zielasek, J., Kieffer, R., Simmons, C., and Hartung, H. P. 1995. Failure of anti-GM1 IgG and IgM to induce conduction block following intraneural transfer. MuscleNerve. 18:388–394.

    Google Scholar 

  89. Takigawa, T., Yasuda, H., Kikkawa, R., Shigeta, Y., Saida, T., and Kitasato, H. 1995. Antibodies against GM1 ganglioside affect K+ and Na+ currents in isolated rat myelin fibers. Ann. Neurol. 37: 436–442.

    Google Scholar 

  90. Ganser, A. L., Kirschner, D. A., and Willinger, M. 1983. Ganglioside localization on myelinated nerve fibres by cholera toxin binding. J. Neurocytology. 12:921–938.

    Google Scholar 

  91. Nardelli, E., Anzini, P., Moretto, G., Rizzuto, N., and Steck, A. J. 1994. Pattern of nervous tissue immunostaining by human antiglycolipid antibodies. J. Neurol. Sci. 122:220–227.

    Google Scholar 

  92. Molander, M., Berthold, C.-H., Persson, H., Andersson, K., and Fredman, P. 1997. Monosialoganglioside (GM1) immunofluorescence in rat spinal roots studied with a monoclonal antibody. J Neurocytology, accepted.

  93. Ilyas, A. A., Mithen, F. A., Dalakas, M. C., Chen, Z.-W., and Cook, S. D. 1992. Antibodies to acidic glycolipids in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. J Neurol. Sci. 107:111–121.

    Google Scholar 

  94. Chou, D. K., and Jungalwala, F. B. 1993. N-acetylglucosaminyl-transferas regulates the expression of neolactoglycolipids including sulfoglucuronylglycolipids in the developing nervous system. J Biol. Chem. 268:21727–21733.

    Google Scholar 

  95. Pestronk, A. 1991. Invited review, motor neuropathies, motor neuron disorders and anti-glycolipid antibodies. Muscle Nerve. 14: 927–936.

    Google Scholar 

  96. Morell, P., Quarles, R. H., and Norton, W. T. 1994. Myelin formation structure, and biochemistry. In Basic Neurochemistry: Molecular, Cellular, and Medical Aspects. G. J. Siegel, B. W. Agranoff, R. W. Albers, and P. B. Molinoff, eds (New York: Raven Press), pp 117–143.

    Google Scholar 

  97. Nair, S. M., Prasadarao, N., Tobef, S. A., and Jungawala, F. B. 1993. Rostrocaudal expression of antibody HNK-1-reactive glycolipid in mouse cerebellum relationship to development compartments and leaner mutation. J. Comp. Neurol. 332:282–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pam Fredman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fredman, P., Lekman, A. Glycosphingolipids as Potential Diagnostic Markers and/or Antigens in Neurological Disorders. Neurochem Res 22, 1071–1083 (1997). https://doi.org/10.1023/A:1022495430583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022495430583

Navigation