Skip to main content
Log in

Numerical Solution of the Kiessl Model

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

The Kiessl model of moisture and heat transfer in generally nonhomogeneous porous materials is analyzed. A weak formulation of the problem of propagation of the state parameters of this model, which are so-called moisture potential and temperature, is derived. An application of the method of discretization in time leads to a system of boundary-value problems for coupled pairs of nonlinear second order ODE's. Some existence and regularity results for these problems are proved and an efficient numerical approach based on a certain special linearization scheme and the Petrov-Galerkin method is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Appel, P. A. Zabrejko: Nonlinear Superposition Operators. Cambridge tracts in mathematics 95, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  2. S. Campanato: Sistemi Ellittici in Forma Divergenza. Regolarita all'interno. Quaderni, Pisa, 1980.

    Google Scholar 

  3. J. Dalík: A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems. Appl. Math. 36 (1991), 329-352.

    Google Scholar 

  4. J. Dalík, J. Daněček, S. Šastník: The Kiessl model, existence of the classical solution. Sborník konf. Kočovce (1999), to appear.

  5. J. Dalík, J. Daněček, S.Šastník: A model of simultaneous distribution of moisture and temperature in porous materials. Ceramics (Silikáty) 41(2) (1997), 41-46.

    Google Scholar 

  6. J. Dalík, J. Svoboda, S. Šastník: Návrh matematického modelu šíření vlhkosti a tepla v pórovitém prostředí. Preprint.

  7. D. Gawin, P. Baggio, B. A. Schrefler: Modelling heat and moisture transfer in deformable porous building materials. Arch. Civil Eng. XLII,3 (1996), 325-349.

    Google Scholar 

  8. M. Giaquinta, G. Modica: Local existence for quasilinear parabolic systems under nonlinear boundary conditions. Am. Mat. Pura Appl. 149 (1987), 41-59.

    Google Scholar 

  9. H. Glaser: Graphisches Verfahren zur Untersuchung von Diffusionsvorgängen. Kältetechnik H.10 (1949), 345-349.

    Google Scholar 

  10. J. Kačur: Solution to strongly nonlinear parabolic problems by a linear approximation scheme. Preprint M2-96, Comenius University Bratislava, Faculty of Mathematics and Physics.

  11. K. Kiessl: Kapillarer und dampfförmiger Feuchtetransport in mehrschichtlichen Bauteilen. Dissertation, Universität in Essen.

  12. J. Nečas: Introduction to the theory of nonlinear elliptic equations. Teubner Texte zur Mathematik 52, Teubner Verlag, Leipzig, 1986.

    Google Scholar 

  13. J. R. Philip, D. A. de Vries: Moisture movements in porous materials under temperature gradients. Am. Geophys. Union 38 (1957), 222-232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalík, J., Daněčcek, J. & Vala, J. Numerical Solution of the Kiessl Model. Applications of Mathematics 45, 3–17 (2000). https://doi.org/10.1023/A:1022232632054

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022232632054

Navigation