Skip to main content
Log in

Modeling of H2 and H2/CH4 Moderate-Pressure Microwave Plasma Used for Diamond Deposition

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

One-dimensional transport models of moderate-pressure H 2 and H 2 /CH 4 plasmas obtained in a diamond deposition microwave reactor are presented. These models describe the plasma as a thermochemically nonequilibrium flow with three different energy modes. The solution of the one-dimensional plasma transport equations enabled the estimation of plasma species concentrations and temperatures on the axis of the reactor. As far as pure H 2 plasmas are concerned, results showed that the model predictions of gas and vibration temperatures are in good agreement with experimental measurements. The model also yields a relatively good qualitative prediction of the variations of H-atom mole fraction with the power density absorbed by the plasma. The results obtained for H 2 /CH 4 discharges showed that the model prediction on the variations of H-atom mole fraction with methane percentage in the discharge is in good qualitative agreement with experimental results. They also showed that methane is rapidly converted to acetylene before reaching the discharge zone. The concentrations of neutral hydrocarbon species in the reactor are mainly governed by thermal chemistry. The addition of methane strongly affects the ionization kinetics of the plasma. Three major ions are generally obtained in H 2 /CH 4 plasmas: C 2 H +2 , C 2 H +3 , and C 2 H +5 . The relative predominance of these ions depends on the considered plasma region and on the discharge conditions. The ionic species concentrations are also mainly governed by chemistry, except very near the substrate surface. Finally the use of this transport model along with the surface chemistry model of Goodwin (1) enabled us to estimate the diamond growth rate for several discharge conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. D. G. Goodwin, J. Appl. Phys. 74, 6888 (1993).

    Google Scholar 

  2. A. Gicquel, E. Anger, and C. Heau, in Microwave Discharges: Fundamentals and Applications (C. M. Ferreira and M. Moisan, eds.), Plenum Press, New York (1993), p. 541.

    Google Scholar 

  3. A. Gicquel, K. Hassouni, S. Farhat, Y. Breton, C. D. Scott, M. Lefebvre, and M. Péalat, Diamond Relat. Mater. 3, 581 (1994).

    Google Scholar 

  4. A. Gicquel, E. Anger, M. F. Ravet, D. Fabre, G. Scatena, and Z. Z. Wang, Diamond Relat. Mater. 2, 417 (1993).

    Google Scholar 

  5. F. Silva, A. Gicquel, A. Tardieu, P. Clédat, and Th. Chauveau, Diamond Relat. Mater. 5, 338 (1996).

    Google Scholar 

  6. D. G. Goodwin and G. Gavillet, J. Appl. Phys. 68, 6393 (1990).

    Google Scholar 

  7. D. G. Goodwin, Appl. Phys. Lett. 59, 277 (1991).

    Google Scholar 

  8. S. L. Girshick, C. Li, B. W. Yu, and H. Han, Plasma Chem. Plasma Process. 13, 169 (1993).

    Google Scholar 

  9. B. W. Yu and S. L. Girshick, J. Appl. Phys. 75, 3914 (1994).

    Google Scholar 

  10. S. K. Baldwin, Jr., T. G. Owano, and C. H. Kruger, Plasma Chem. Plasma Process. 14, 169 (1994).

    Google Scholar 

  11. S. W. W. Reeve, W. A. Weimer, and F. M. Cerio, J. Appl. Phys. 74, 7521 (1994).

    Google Scholar 

  12. C. G. Schwärzler, O. Schnabl, J. Laimer, and H. Störi, Plasma Chem. Plasma Process. 16, 173 (1996).

    Google Scholar 

  13. W. A. Weimer, F. M. Cerio, and C. E. Johnson, J. Mater. Res. 6, 2134 (1991).

    Google Scholar 

  14. K. Hassouni, S. Farhat, C. D. Scott, and A. Gicquel, J. Phys. III (France) 6, 1229 (1996).

    Google Scholar 

  15. K. Hassouni, M. Capitelli, S. Farhat, A. Gicquel, and C. D. Scott, Surf. Coat. Technol. 97, 495 (1997).

    Google Scholar 

  16. S. J. Harris, Appl. Phys. Lett. 56, 2298 (1990).

    Google Scholar 

  17. K. Hassouni, M. Capitelli, A. Gicquel, S. Farhat, and C. D. Scott, Third International Workshop on Microwave Discharges: Fundamentals and Applications, 20–25 April, 1997, Fontevraud, France (to be published).

  18. M. Capitelli, G. Colonna, K. Hassouni, and A. Gicquel, Plasma Chem. Plasma Process. 16, 153 (1996).

    Google Scholar 

  19. C. D. Scott, S. Farhat, A. Gicquel, K. Hassouni, and M. Lefebvre, J. Thermophys. Heat Trans. 10, 426 (1996).

    Google Scholar 

  20. M. Glass-Maujean, Phys. Rev. Lett. 62, 144 (1989).

    Google Scholar 

  21. A. Gicquel, in Handbook for Industrial Diamonds and Diamond Films (M. Prelas, G. Popovicci, and K. Bigelow, eds.), Marcel Dekker, New York, New York (1997), pp. 615–630.

    Google Scholar 

  22. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Corp. (1980).

  23. M. E. Coltrin, R. J. Kee, and G. H. Evans, J. Electrochem. Soc. 136, 819 (1989).

    Google Scholar 

  24. J. Oskam, Philips Res. Rep. 13, 335 (1958).

    Google Scholar 

  25. K. Hassouni, S. Farhat, and C. D. Scott, in Handbook for Industrial Diamonds and Diamond Films, (M. Prelas, G. Popovicci, and K. Bigelow, eds.), Marcel Dekker, New York (1997), pp. 697–739.

    Google Scholar 

  26. J. M. Yos, Technical Memorandum RAD, TM-63-7, AVCO-RAD, 1963, Wilmington, Mass.

  27. J.-H. Lee, in Thermal Design of Aeroassisted Orbital Transfer Vehicles (H. F. Nelson, ed.), Progress in Astronautics and Aeronautics, Vol. 96 (1985), pp. 3–53.

  28. A. V. Phelps, J. Phys. Chem. Ref. Data 19, 653 (1990).

    Google Scholar 

  29. H. Tawara, Y. Itikawa, H. Nishimura, and M. Yoshino, J. Phys. Chem. Ref. Data 19, 617 (1990).

    Google Scholar 

  30. R. K. Janev, W. D. Langer, K. Evans, Jr., and D. E. Post, Jr., Elementary Processes in Hydrogen-Helium Plasmas, Springer-Verlag, Berlin (1987).

    Google Scholar 

  31. J. Loureiro and C. M. Ferreira, J. Phys. D: Appl. Phys. 22, 1680 (1989).

    Google Scholar 

  32. J. R. Hiskes, J. Appl. Phys. 70, 3409 (1991).

    Google Scholar 

  33. C. Gorse, M. Capitelli, M. Bacal, J. Bretagne, and A. Lagana, Chem. Phys. 117, 177 (1987).

    Google Scholar 

  34. A. Gicquel, M. Chenevier, K. Hassouni, Y. Breton, and A. Tserepi, submitted to J. Appl. Phys. (May 1997).

  35. M. Nishida, Phys. Fluids 15, 596–602 (1972).

    Google Scholar 

  36. L. N. Krasnoperov, I. J. Kalinovski, H. N. Chu, and D. Gutmann, J. Phys. Chem. 97, 11787 (1993).

    Google Scholar 

  37. A. Gicquel, M. Chenevier, Y. Breton, M. Petiau, J. P. Booth, and K. Hassouni, J. Phys. III (France) 6, 1167 (1996).

    Google Scholar 

  38. S. J. Harris, J. Appl. Phys. 65, 3044 (1989).

    Google Scholar 

  39. M. Frenklach, J. Appl. Phys. 65, 5143 (1989).

    Google Scholar 

  40. S. J. Harris and A. M. Weiner, J. Appl. Phys. 67, 6520 (1990).

    Google Scholar 

  41. C. T. Bowman, R. K. Hanson, D. E. Davidson, W. C. Gardiner, Jr., V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, and M. Goldenberg, http://www.me.berkley.edu/gri_mech/.

  42. H. Tahara, K. I. Minami, A. Murai, T. Yasui, and T. Yoshikawa, Jpn. J. Appl. Phys. 34, 1972 (1995).

    Google Scholar 

  43. H. Tawara, Y. Itakawa, H. Nishimura, H. Tanaka, and Y. Nakamura, NIFS-DATA Res. Rep. 6, 1–112 (1990).

    Google Scholar 

  44. K. Tachibana, M. Nishida, H. Harima, and Y. Urano, J. Phys. D: Appl. Phys. 17, 1727 (1984).

    Google Scholar 

  45. L. Lehfaoui, C. Rebrion-Rowe, S. Laubé, J. B. A. Mitchell, and B. R. Rowe, J. Chem. Phys. 106, 1 (1997).

    Google Scholar 

  46. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, in Transport Phenomena, Wiley, New York (1960).

    Google Scholar 

  47. M. E. Coltrin, R. J. Kee, and J. A. Miller, J. Electrochem. Soc. 133, 1206 (1986).

    Google Scholar 

  48. D. G. Goodwin and J. E. Butler, Handbook for Industrial Diamonds and Diamond Films (M. Prelas, G. Popovicci, and K. Bigelow, eds.), Marcel Dekker, New York (1997), pp. 527–583.

    Google Scholar 

  49. W. L. Hsu, J. Appl. Phys. 72, 3102 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassouni, K., Leroy, O., Farhat, S. et al. Modeling of H2 and H2/CH4 Moderate-Pressure Microwave Plasma Used for Diamond Deposition. Plasma Chemistry and Plasma Processing 18, 325–362 (1998). https://doi.org/10.1023/A:1021845402202

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021845402202

Navigation