Skip to main content
Log in

A QTL for the Genetic Variance in Free-Running Period and Level of Locomotor Activity Between Inbred Strains of Mice

  • Published:
Behavior Genetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Many genes support the manifestation of the circadian period in mice. In a multiple-gene trait all genes contributing in a minor way to this characteristic are quantitative trait loci (QTL). Screens of both the BXD and the CXB panels of recombinant inbred mice suggested that distal chromosome 1, between 90 and 100 cM, contained a QTL, Cplaq3, for a difference in the circadian period of locomotor activity between the C57BL/6J and the DBA/2J and between the BALB/cBy and the C57BL/6By progenitor strains. The mice studied were a commercially available congenic strain, B6.D2-Mtv7a/Ty, from 50 to 100 days old. This congenic strain contains a small DBA/2J genomic insert that covers the region of the provisional QTL in a 99.9% C57BL/6J background. The congenic mice had a shorter period than C57BL/6J mice, confirming that this region has a QTL for the difference in period between the C57BL/6J and the DBA/2J strains. In addition, these data suggest that this region has a QTL for the mean amount of daily activity and for the pattern of locomotor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Andre, E., Conquet, F., Steinmayr, M., Stratton, S. C., Porciatti, V., and Becker-Andre, M. (1998). Disruption of retinoid-related orphan receptor beta changes circadian behavior causes retinal degeneration and leads to vacillans phenotype in mice. EMBO J. 17:3867-3877.

    PubMed  Google Scholar 

  • Antoch, M. P., Song, E. J., Chang, A. M., Vitaterna, M. H., Zhao, Y., Wilsbacher, L. D., Sangoram, A. M., King, D. P., Pinto, L. H., and Takahashi, J. S. (1997). Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89: 655-667.

    PubMed  Google Scholar 

  • Aschoff, J., and Pohl, H. (1978). Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment. Naturwissenschaften 65:80-84.

    PubMed  Google Scholar 

  • Aschoff, J., Klotter, K., and Wever, R. (1965). Circadian vocabulary: A recommended terminology with definitions. In Aschoff, J. (ed.), Circadian Clocks, North-Holland, Amsterdam, pp. x-xix.

    Google Scholar 

  • Belknap, J. K., and Crabbe, J. C. (1992). Chromosome mapping of gene loci affecting morphine and amphetamine responses in BXD recombinant inbred mice. In Solon, H. H., and Kalivas, P. W. (eds.), The Neurobiology of Drug and Alcohol Addiction, Vol. 654 (Ann. N.Y. Acad. Sci.), Elsevier, New York, pp. 311-323.

    Google Scholar 

  • Brown, L., and Baer, R. (1994). HEN1 encodes a 20-kilodalton phosphoprotein that binds an extended E-box motif as a homodimer. Mol. Cell. Biol. 14:1245-1255.

    PubMed  Google Scholar 

  • Crabbe, J. C., Belknap, J. K., Mitchell, S. R., and Crawshaw, L. I. (1994). Quantitative trait loci mapping of genes that influence the sensitivity and tolerance to ethanol-induced hypothermia in BXD recombinant inbred mice. J. Pharmacol. Exp. Ther. 269:184-192.

    PubMed  Google Scholar 

  • Daan, S., and Pittendrigh, C. S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J. Comp. Physiol. 106:253-266.

    Google Scholar 

  • Dietrich, W., Katz, H., Lincoln, S. E., Shin, H. S., Friedman, J., Dracopoli, N. C., and Lander, E. S. (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131: 423-447.

    PubMed  Google Scholar 

  • Dietrich, W. F., Miller, J., Steen, R., Merchant, M. A., Damron-Boles, D., Husain, Z., Dredge, R., Daly, M. J., Ingalls, K. A., O'Connor, T. J., et al. (1996). A comprehensive genetic map of the mouse genome. Nature 380:149-152.

    PubMed  Google Scholar 

  • Dunlap, J. (1998). An end in the beginning. Science 280:1548-1549.

    PubMed  Google Scholar 

  • Edgar, D. M., Martin, C. E., and Dement, W. C. (1991). Activity feedback to the mammalian circadian pacemaker: Influence on observed measures of rhythm period length. J. Biol. Rhythms 6:185-199.

    PubMed  Google Scholar 

  • Ferraro, T. (1998): Personal communication.

  • Flaherty, L. (1981): Congenic strains. In The Mouse in Biomedical Research, Vol.1, Academic Press, New York, pp. 215-221.

    Google Scholar 

  • Gekakis, N., Staknis, D., Nguyen, H. B., Davis, F. C., Wilsbacher, L. D., King, D. P., Takahashi, J. S., and Weitz, C. J. (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564-1569.

    PubMed  Google Scholar 

  • Hofstetter, J. R., and Mayeda, A. R. (1998). Provisional quantitative trait loci (QTL) for the Aschoff effect in RI mice. Physiol. Behav. 64:97-101.

    PubMed  Google Scholar 

  • Hofstetter, J. R., Mayeda, A. R., Possidente, B., and Nurnberger, J. I., Jr. (1995). Quantitative trait loci (QTL) for circadian rhythms of locomotor activity in mice. Behav. Genet. 25:545-556.

    PubMed  Google Scholar 

  • Hofstetter, J. R., Zhang, A., Mayeda, A. R., Guscar, T., Nurnberger, J. I., Jr., and Lahiri, D. K. (1997). Genomic DNA from mice: A comparison of recovery methods and tissue sources. Biochem. Mol. Med. 62:197-202.

    PubMed  Google Scholar 

  • Hofstetter, J. R., Possidente, B., and Mayeda, A. R. (1999). Provisional QTL for circadian period of wheel-running in laboratory mice: Quantitative Genetics of period in RI mice. Chronobiol. Int. 16:269-279.

    PubMed  Google Scholar 

  • King, D. P., Vitaterna, M. H., Chang, A. M., Dove, W. F., Pinto, L. H., Turek, F. W., and Takahashi, J. S. (1997a). The mouse Clock mutation behaves as an antimorph and maps within the W19H deletion, distal of Kit. Genetics 146:1049-1060.

    Google Scholar 

  • King, D. P., Zhao, Y., Sangoram, A. M., Wilsbacher, L. D., Tanaka, M., Antoch, M. P., Steeves, T. D., Vitaterna, M. H., Kornhauser, J. M., Lowrey, P. L., Turek, F. W., and Takahashi, J. S. (1997b). Positional cloning of the mouse circadian Clock gene. Cell 89: 641-653.

    PubMed  Google Scholar 

  • Lopez-Molina, L., Conquet, F., Dubois-Dauphin, M., and Schibler, U. (1997). The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J. 16:6762-6771.

    PubMed  Google Scholar 

  • Markel, P. D., Fulker, D. W., Bennett, B., Corley, R. P., DeFries, J. C., Erwin, V. G., and Johnson, T. E. (1996). Quantitative trait loci for ethanol sensitivity in the LS x SS recombinant inbred strains: interval mapping. Behav. Genet. 26:447-458.

    PubMed  Google Scholar 

  • Mayeda, A. R., Hofstetter, J. R., Belknap, J. K., and Nurnberger, J. I., Jr. (1996). Hypothetical quantitative trait loci (QTL) for circadian period of locomotor activity in CXB recombinant inbred strains of mice. Behav. Genet. 26:505-511.

    PubMed  Google Scholar 

  • Moore, R. Y., and Lenn, N. J. (1972). A retinohypothalamic projection in the rat. J. Comp. Neurol. 146:1-14.

    PubMed  Google Scholar 

  • Plomin, R., McClearn, G. E., Gora-Maslak, G., and Neiderhiser, J. M. (1991). Use of recombinant inbred strains to detect quantitative trait loci associated with behavior. Behav. Genet. 21:99-116.

    PubMed  Google Scholar 

  • Possidente, B., and Stephan, F. K. (1988). Circadian period in mice: Analysis of genetic and maternal contributions to inbred strain differences. Behav. Genet. 18:109-117.

    PubMed  Google Scholar 

  • Ralph, M. R., Foster, R. G., Davis, F. C., and Menaker, M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975-978.

    PubMed  Google Scholar 

  • Schwartz, W. J., and Zimmerman, P. (1990). Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains. J. Neurosci 10:3685-3694.

    PubMed  Google Scholar 

  • Shen, H., Watanabe, M., Tomasiewicz, H., Rutishauser, U., Magnuson, T., and Glass, J. D. (1997). Role of neural cell adhesion molecule and polysialic acid in mouse circadian clock function. J. Neurosci. 17:5221-5229.

    PubMed  Google Scholar 

  • Taylor, B. A., and Frankel, W. N. (1993). A new strain congenic for the Mtv-7/Mls-1 locus of mouse chromosome 1. Immunogenetics 38:235-237.

    PubMed  Google Scholar 

  • Tobler, I., Gaus, S. E., Deboer, T., Achermann, P., Fischer, M., Rulicke, T., Moser, M., Oesch, B., McBride, P. A., and Manson, J. C. (1996). Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380:639-642.

    PubMed  Google Scholar 

  • Vitaterna, M. H., Lowrey, P. L., McDonald, J. D., Dove, W. F., Pinto, L. H., Turek, F. W., and Takahashi, J. S. (1993). Isolation of the first circadian clock mutation in the mouse. Soc. Neurosci. Abstr. 19:612.10.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayeda, A.R., Hofstetter, J.R. A QTL for the Genetic Variance in Free-Running Period and Level of Locomotor Activity Between Inbred Strains of Mice. Behav Genet 29, 171–176 (1999). https://doi.org/10.1023/A:1021639901679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021639901679

Navigation