Skip to main content
Log in

Molecular mobility in polymers studied with thermally stimulated recovery

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermally stimulated recovery, TSR, like as thermally stimulated depolarisation currents, is a suitable technique that allows for the study of conformational mobility in polymeric systems. Due to its relatively low equivalent frequency and transient nature, the viscoelastic data obtained from this technique are complementary to conventional dynamic mechanical analysis (DMA). In this work TSR-like experiments, including TSR, thermally stimulated creep and thermal sampling (TS) experiments were carried out in the same commercial DMA equipment, allowing for the direct comparison of the data. Some advises for running TSR experiments are presented, such as the need of performing blank experiments and temperature calibrations. The analysis of the data to obtain the thermokinetic parameters of TS experiments is revised. In particular, from the direct fitting of the data, it is reported a tendency for a linear relationship between the pairs of values of (E a, log τ0) that best adjust any TS single experiment. It is concluded that the usual equation for describing TS experiments possesses an intrinsic compensation between these two thermokinetic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. N. Haward and R. J. Young, (Eds.,) The Physics of Glassy Polymers, 2nd Ed., Chapman and Hall, London 1997.

    Google Scholar 

  2. L. Woo, S. Wesphal and M. T. K. Ling, Polym. Eng. Sci., 34 (1994) 420.

    Article  CAS  Google Scholar 

  3. L. Woo, S. Wesphal, S. Shang and M. T. K. Ling, Thermochim. Acta, 284 (1996) 57.

    Article  CAS  Google Scholar 

  4. R. Richert and A. Blumen (Eds.), Disordered Effects on Relaxational Processes, Springer Verlag, Berlin 1994.

    Google Scholar 

  5. J. van Turnhout, Thermally Stimulated Discharge of Polymer Electrets, Elsevier, New York 1975.

    Google Scholar 

  6. C. Lavergne and C. Lacabanne, IEEE Electrical Insulation Magazine, 9 (1993) 5.

    Article  Google Scholar 

  7. C. Lacabanne, D. C. Chatain and J. C. Mompajens, J. Macrom. Sci. Phys. B, 134 (1977) 537.

    Google Scholar 

  8. C. Lacabanne, D. C. Chatain, J. C. Mompajens, A. Hiltner and E. Baer, Solid State Commun., 27 (1978) 1055.

    Article  CAS  Google Scholar 

  9. C. Lacabanne, A. Lamure, G. Teyssedre, A. Bernès and M. Mourgues, J. Non-Cryst. Solids, 172 (1994) 174.

    Article  Google Scholar 

  10. J. P. Crine, J. Appl. Phys., 66 (1989) 1308.

    Article  Google Scholar 

  11. M. G. McCrum, Polymer, 23 (1982) 1261.

    Article  CAS  Google Scholar 

  12. M. G. McCrum, Polymer, 25 (1984) 299.

    Article  CAS  Google Scholar 

  13. M. G. McCrum, Polymer, 25 (1984) 309.

    Article  CAS  Google Scholar 

  14. H. H. Y. Tang and H. L. Williams, J. Appl. Polym. Sci., 40 (1990) 495.

    Article  CAS  Google Scholar 

  15. N. M. Alves, J. F. Mano and J. L. Gómez Ribelles, Macromol. Symp., 148 (1999) 437.

    CAS  Google Scholar 

  16. N. M. Alves, J. F. Mano and J. L. Gómez Ribelles, J. Mat. Res. Innovat., 4 (2001) 170.

    Article  CAS  Google Scholar 

  17. N. M. Alves, J. F. Mano and J. L. Gómez Ribelles, Polymer, 42 (2001) 4173.

    Article  CAS  Google Scholar 

  18. N. N. Peschanskaya, P. N. Yakushev, A. B. Sinani and V. A. Bershtein, Thermochim. Acta, 238 (1994) 429.

    Article  CAS  Google Scholar 

  19. V. A. Bershtein, N. N. Peschanskaya, J. L. Halary and L. Monnerie, Polymer, 40 (1999) 6687.

    Article  CAS  Google Scholar 

  20. B. B. Sauer, P. Avakian, B. S. Hsiao and H. W. Starkweather, Macromolecules, 23 (1990) 5119.

    Article  CAS  Google Scholar 

  21. J. F. Mano; N. T. Correia and J. J. Moura Ramos, Polymer, 35 (1994) 3561.

    Article  CAS  Google Scholar 

  22. J. F. Mano, Thermochim. Acta, 332 (1999) 161.

    Article  CAS  Google Scholar 

  23. S. V. Shenogin, S. I. Nazarenko, S. N. Rudnev, E. F. Oleinik and G. W. H. Höhne, Vysokomol. Soedin, 39 (1997) 2087.

    CAS  Google Scholar 

  24. C. M. Earnest and R. J. Seyler, J. Testing and Evaluation, 20 (1992) 430.

    CAS  Google Scholar 

  25. C. M. Earnest and R. J. Seyler, J. Testing and Evaluation, 20 (1992) 434.

    Article  Google Scholar 

  26. R. Riesen and J. E. K. Schawe, J. Therm. Anal. Cal., 59 (2000) 337.

    Article  CAS  Google Scholar 

  27. G. W. H. Höhne, W. Hemminger and H.-J. Flammershein, Differential Scanning Calorimetry - An Introduction for Practitioners, Springer Verlag, Berlin 1996.

    Google Scholar 

  28. J. M. Cuesta Arenas, J. F. Mano and J. L. Gómez Ribelles, J. Non-cryst. Solids, accepted.

  29. J. F. Mano and J. J. Moura Ramos, J. Thermal Anal., 44 (1995) 1037.

    CAS  Google Scholar 

  30. J. F. Mano, N. T. Correia, J. J. Moura Ramos, S. R. Andrews and G. Williams, Liquid Crystals, 20 (1996) 201.

    CAS  Google Scholar 

  31. N. Tsutsumi and Y. Okabe, J. Polym. Sci.: Polym. Phys., 38 (2000) 88.

    Article  CAS  Google Scholar 

  32. C. Bucci, R. Fieschi and G. Guidi, Phys. Rev., 148 (1966) 816.

    Article  CAS  Google Scholar 

  33. N. M. Alves, J. F. Mano and J. L. Gómez Ribelles, Polymer, accepted.

  34. S. H. Carr, in Electric Properties of Polymers, Ed. D. A. Seanor, Academic Press, New York 1982.

    Google Scholar 

  35. R. Chen and G. A. Haber, Chem. Phys. Lett., 2 (1968) 483.

    Article  CAS  Google Scholar 

  36. K. Marossy, G. Deak, S. Kéki and M. Zsuga, Macromolecules, 32 (1999) 814.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, N.M., Mano, J.F. & Gómez Ribelles, J.L. Molecular mobility in polymers studied with thermally stimulated recovery. Journal of Thermal Analysis and Calorimetry 70, 633–649 (2002). https://doi.org/10.1023/A:1021609531577

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021609531577

Navigation