Skip to main content
Log in

New Perspectives on Direct Heterogeneous Olefin Epoxidation

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Important commercial direct oxidation processes include the epoxidation of ethylene to ethylene oxide and the newer epoxidation of butadiene to epoxybutene (EpB), both carried out with silver catalysts. However, detailed reaction mechanisms for these processes are still matters of debate. The guiding hypothesis of our research is that surface oxametallacycles are key intermediates in selective olefin epoxidation. By a combination of surface science experiments and density functional theory (DFT) calculations, we have synthesized the first stable surface oxametallacycles and have verified their identities and structures. In the case of EpB chemistry, we have been able to demonstrate direct connections between surface oxametallacycles and epoxide products. The EpB ring opens with an activation energy of 8.4 kcal/mol on Ag(110) to form a stable surface oxametallacycle. Spectroscopic results for this species are in excellent agreement with DFT calculations for an oxametallacycle bound to three silver atoms of a seven-atom cluster. This oxametallacycle undergoes 1,2 and 1,4 ring-closure reactions during temperature programmed desorption to form EpB and 2,5-dihydrofuran, respectively. This reaction represents the first demonstration of surface oxametallacycle ring closure to form an epoxide, and we suggest that surface oxametallacycles are of general importance in silver-catalyzed olefin epoxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Haruta, Stud. Surf. Sci. Catal. 110 (1997) 123.

    Google Scholar 

  2. B. S. Uphade, S. Tsubuta, T. Hayashi and M. Haruta, Chem. Lett. (1998) 1277.

  3. T. Hayashi, K. Tanaka and M. Haruta, J. Catal. 178 (1998) 566.

    Google Scholar 

  4. T. A. Nijhuis, B. J. Huizenga, M. Makkee and J. A. Moulijn, I&EC Res. 38(1999) 884.

    Google Scholar 

  5. D. Denton, J. Monnier, S. Falling, J. Stavinoha, Jr. and W. Watkins, Chemica Oggi, May (1996) 17.

  6. J. R. Monnier, Stud. Surf. Sci. Catal. 110 (1997) 135.

    Google Scholar 

  7. J. R. Monnier and P. J. Muehlbauer, US patent 4,987,498 (1990).

  8. M. A. Barteau and R. J. Madix, J. Am. Chem. Soc. 105 (1983) 344.

    Google Scholar 

  9. S. Hawker, C. Mukoid, J. S. Badyal and R. M. Lambert, Surf. Sci. 219 (1989) L615.

    Google Scholar 

  10. C. Mukoid, S. Hawker, J. S. Badyal and R. M. Lambert, Catal. Lett. 4 (1990) 57.

    Google Scholar 

  11. N. J. Ossipoff and N. W. Cant, Catal. Lett. 16 (1992) 149.

    Google Scholar 

  12. J. T. Roberts and R. J. Madix, J. Am. Chem. Soc. 110 (1988) 8540.

    Google Scholar 

  13. R. J. Madix and J. T. Roberts, in: Surface Reactions, ed. R. J. Madix (Springer, Berlin, 1994) p. 5.

    Google Scholar 

  14. M. Mavrikakis, D. J. Doren and M. A. Barteau, J. Phys. Chem. B 102 (1998) 394.

    Google Scholar 

  15. J. E. Backvall, F. Bokman and M. R. A. Blomberg, J. Am. Chem. Soc. 114 (1992) 534.

    Google Scholar 

  16. W. M. H. Sachtler, C. Backx and R. A. van Santen, Catal. Rev. Sci. Eng. 23 (1981) 127.

    Google Scholar 

  17. R. A. van Santen and H. P. C. E. Kuipers, Adv. Catal. 35 (1987) 265.

    Google Scholar 

  18. J. G. Serafin, A. C. Liu and S. R. Seyedmonir, J. Mol. Catal. A: Chemical 131 (1998) 157.

    Google Scholar 

  19. M. M. Bhasin, Catal. Lett. 59 (1999) 1.

    Google Scholar 

  20. C. T. Campbell and M. T. Paffett, Appl. Surf. Sci. 19 (1984) 28.

    Google Scholar 

  21. C. T. Campbell, J. Catal. 99 (1986) 28.

    Google Scholar 

  22. R. B. Grant and R. M. Lambert, J. Catal. 93 (1985) 92.

    Google Scholar 

  23. S. A. Tan, R. B. Grant and R. M. Lambert, J. Catal. 100 (1986) 383.

    Google Scholar 

  24. R. B. Grant and R. M. Lambert, Langmuir 1 (1985) 29.

    Google Scholar 

  25. S. A. Tan, R. B. Grant and R. M. Lambert, Appl. Catal. 31 (1987) 159.

    Google Scholar 

  26. D. M. Minahan and G. B. Hoflund, J. Catal. 158 (1996) 109.

    Google Scholar 

  27. D. M. Minahan and G. B. Hoflund, J. Catal. 162 (1996) 48.

    Google Scholar 

  28. H. Nakatsuji, K. Takahashi and Z. M. Hu, Chem. Phys. Lett. 277 (1997) 551.

    Google Scholar 

  29. K. A. Jorgensen and B. Schiott, Chem. Rev. 90 (1990) 1483.

    Google Scholar 

  30. R. Shekhar and M. A. Barteau, Surf. Sci. 348 (1996) 55.

    Google Scholar 

  31. R. M. Lambert and R. M. Ormerod, Langmuir 10 (1994) 730.

    Google Scholar 

  32. N. F. Brown and M. A. Barteau, Surf. Sci. 298 (1993) 6.

    Google Scholar 

  33. X. Xu and C. M. Friend, J. Am. Chem. Soc. 113 (1991) 6779.

    Google Scholar 

  34. X. Xu and C. M. Friend, J. Phys. Chem. 95 (1991) 10753.

    Google Scholar 

  35. X. Xu and C. M. Friend, J. Am. Chem. Soc. 112 (1990) 4571.

    Google Scholar 

  36. M. J. Calhorda, C. M. Friend and P. E. M. Lopes, J. Mol. Catal. A 97 (1995) 157.

    Google Scholar 

  37. R. L. Brainard and R. J. Madix, J. Am. Chem. Soc. 109 (1987) 8082.

    Google Scholar 

  38. R. L. Brainard and R. J. Madix, J. Am. Chem. Soc. 111 (1989) 3826.

    Google Scholar 

  39. J. Houtman and M. A. Barteau, J. Catal. 130 (1991) 528.

    Google Scholar 

  40. N. F. Brown and M. A. Barteau, Langmuir 8 (1992) 862.

    Google Scholar 

  41. N. F. Brown and M. A. Barteau, J. Am. Chem. Soc. 114 (1992) 4258.

    Google Scholar 

  42. N. F. Brown and M. A. Barteau, ACS Symp. Ser. 517 (1993) 345.

    Google Scholar 

  43. N. F. Brown and M. A. Barteau, J. Phys. Chem. 98 (1994) 12737.

    Google Scholar 

  44. N. F. Brown and M. A. Barteau, Langmuir 11 (1995) 1184.

    Google Scholar 

  45. N. F. Brown and M. A. Barteau, J. Phys. Chem. 100 (1996) 2269.

    Google Scholar 

  46. C. Backx, C. P. M. de Groot, P. Biloen and W. M. H. Sachtler, Surf. Sci. 128 (1983) 81.

    Google Scholar 

  47. C. Benndorf, B. Nieber and B. Kruger, Surf. Sci. 189/190 (1987) 511.

    Google Scholar 

  48. C. T. Campbell and M. T. Paffett, Surf. Sci. 177 (1986) 417.

    Google Scholar 

  49. S. R. Bare, J. Vac. Sci. Technol. A 10 (1992) 2336.

    Google Scholar 

  50. S. Linic and M. A. Barteau, J. Am. Chem. Soc. 124 (2002) 310.

    Google Scholar 

  51. G. S. Jones and M. A. Barteau, J. Vac. Sci. Technol. A 15 (1997) 1667.

    Google Scholar 

  52. G. S. Jones, M. Mavrikakis, M. A. Barteau and J. M. Vohs, J. Am. Chem. Soc. 120 (1998) 3196.

    Google Scholar 

  53. G. Wu, D. Stacchiola, M. Kaltchev and W. T. Tysoe, Surf. Sci. 463 (2000) 81.

    Google Scholar 

  54. S. Linic, J. W. Medlin and M. A. Barteau, Langmuir (submitted).

  55. J. W. Medlin and M. A. Barteau, J. Phys. Chem. B 105 (2001) 10054.

    Google Scholar 

  56. J. W. Medlin, M. A. Barteau, and J. M. Vohs, J. Mol. Catal. A 163 (2000) 129.

    Google Scholar 

  57. J. W. Medlin, A. B. Sherrill, J. G. Chen and M. A. Barteau, J. Phys. Chem. B 105 (2001) 3769.

    Google Scholar 

  58. J. W. Medlin, J. R. Monnier and M. A. Barteau, J. Catal. 204 (2001) 71.

    Google Scholar 

  59. J. R. Monnier, J. W. Medlin and M. A. Barteau, J. Catal. 203 (2001) 362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barteau, M.A. New Perspectives on Direct Heterogeneous Olefin Epoxidation. Topics in Catalysis 22, 3–8 (2003). https://doi.org/10.1023/A:1021499225395

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021499225395

Navigation