Skip to main content
Log in

In Vitro Differences Between Astrocytes of Control and Wobbler Mice Spinal Cord

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The Wobbler mouse, a model of amyotrophic lateral sclerosis (ALS), presents motorneuron degeneration and pronounced astrogliosis in the spinal cord. We have studied factors controlling astrocyte proliferation in cultures derived from Wobbler and control mice spinal cord. Basal rate of [3H]thymidine incorporation was 15 times lower in Wobbler astrocytes. While in control cultured cells interleukin-1α (IL-1) and corticosterone (CORT) significantly increased proliferation, both agents were inactive in Wobbler astrocytes. The lack of response to CORT was not due to the absence of glucocorticoid receptors, because similar receptor amounts were found in Wobbler and control astrocytes. In contrast to IL-1 and CORT, transforming growth factor-β1 (TGF-β1) substantially increased proliferation of Wobbler astrocytes but not of control cells. Differences in response to TGF-β1 were also obtained by measuring glial fibrillary acidic protein (GFAP) immunoreaction intensity, which was substantially higher in Wobbler astrocytes. Thus, abnormal responses to different mitogens characterized Wobbler astrocytes in culture. We suggest that TGF-β1 may play a role in the reactive gliosis and GFAP hyperexpression found in the degenerating spinal cord of this model of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Schiffer, D., Cordera, S., Cavalla, P., and Migheli, A. 1996. Reactive astrogliosis of the spinal cord in amyotrophic lateral sclerosis. J. Neurol. Sci. 139:(Suppl.) 27–33.

    Google Scholar 

  2. Murayama, S., Inoue, K., Kawakami, H., Bouldin, T. W., and Suzuki, K. 1991. A unique patter of astrocytosis in the primary motor area in amyotrophic lateral sclerosis. Acta Neuropathol. 82:456–461.

    Google Scholar 

  3. Nagy, D., Kato, T., and Kushner, P. D. 1994. Reactive astrocytes are widespread in the cortical gray matter of amyotrophic lateral sclerosis. J. Neurosci. Res. 38:336–347.

    Google Scholar 

  4. O'Reilly, S. A., Roedica, J., Nagy, D., Hallewell, R. A., Alderson, K., Marklund, S. L., Kuby, J., and Kushner, P. D., 1995. Motor neuron-astrocyte interactions and levels of Cu,Zn superoxide dismutase in sporadic amyotrophic lateral sclerosis. Exp. Neurol. 131:203–210.

    Google Scholar 

  5. Hall, E. D., Osstveen, J. A., and Gurney, M. E. 1998. Relationship of microglial and astrocytic activation to disease onset ad progression in a transgenic model of familial ALS. Glia 23: 249–256.

    Google Scholar 

  6. Fujita, K., Yamauchi, M., Matsui, T., titani, K., Takahashi, H., Kato, T., Isomura, G., Ando, M., and Nagata, Y. 1998. Increase of glial fibrillary acidic protein fragments in the spinal cord of motor neuron degeneration mutant mouse. Brain Res. 785: 31–40.

    Google Scholar 

  7. Laage, S., Zobel, G., and Jockusch, H. 1988. Astrocyte overgrowth in the brain stem and spinal cord of mice affected by spinal atrophy, wobbler. Devel. Neurosci. 10:190–198.

    Google Scholar 

  8. Gonzalez Deniselle, M. C., Gonzalez, S., Piroli, G., Lima, A., and De Nicola, A. F. 1996. The 21-aminosteroid U-74389F increases the number of glial fibrillary acidid protein-expressing astrocytes in the spinal cord of wobbler mice. Cell Mol. Neurobiol. 16:61–72.

    Google Scholar 

  9. Gonzalez Deniselle, M. C., Gonzalez, S., Piroli, G., Ferrini, M., Lima, A., and De Nicola, A. F., 1997. Glucocorticoid receptors and actions in the spinal cord of the wobbler mouse, a model for amyotrophic lateral sclerosis. J. Steroid Biochem. and Mol. Biol. 60:205–213.

    Google Scholar 

  10. Hantaz-Ambroise, D., Cambier, D., Ait-Ikhlef, A., Parvy, Ph., Murawsky, M., and Rieger, F. 1995. Excess extracellular and low intracellular glutamate in poorly differentiating wobbler astrocytes and astrocyte recovery in glutamine-depleted culture medium. J.Neurochem. 65:1199–1204.

    Google Scholar 

  11. Giulian, D., Woodward, J., Young, D. G., Krebs, J. F., ad Lachman, L. B. 1988. Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J. Neurosci. 8:2485–2490.

    Google Scholar 

  12. Laping, N. J., Teter, B., Nichols, N. R., Rozovsky, I., and Finch, C. E. 1994. Glial fibrillary acidic protein: regulation by hormones, cytokines, and growth factors. Brain Pathol. 1:259–275.

    Google Scholar 

  13. Merril, J. E. 1991. Effects of interleukin-1 and tumor necrosis factor-α on astrocytes, microglia, oligodendrocytes, and glial precursors in vitro. Dev. Neurosci. 13:130–137.

    Google Scholar 

  14. Gagelin, C., Pierre, M., Gavaret, J. M., and Toru-Delbauffle, D. 1995. Rapid TGF beta 1 effects on actin cytoskeleton of astrocytes: comparison with other factors and implications for cell motility. Glia 13:283–293.

    Google Scholar 

  15. Morgan, T. E., Laping, N. J., Rozovsky, I., Oda, T., Hogan, T. H., Finch, C. E., and Pasinetti, G. M. 1995. Clusterin expression by astrocytes is influenced by transforming growth factor beta 1 and heterotypic cell interactions. J. neuroimmunol. 58: 101–110.

    Google Scholar 

  16. Da Cunha, A., Jefferson, J. A., Jackson, R. W., and Vitkovic, L. 1993. Glial cell-specific mechanisms of TGF-β1 induction by IL-1 in cerebral cortex. J. Neuroimmunol. 42:71–86.

    Google Scholar 

  17. Yung, K. K. L., Tang, F., and Vacca-Galloway, L. L. 1992. Changes of neuropeptides in spinal cord and brain stem of Wobbler mouse at different stages of motorneuron disease. Neuroscience 50:209–222.

    Google Scholar 

  18. Schillaci, R., Brocardo, M. G., and Roldan, A. G. 1995. Cooperative effect between insulin-like growth factor-1 and interleukin-2 on DNA synthesis and interleukin-2-receptor-α chain expression in human lymphocytes. Immunol. & Cell Biol. 73:340–345.

    Google Scholar 

  19. Ferrini, M., Lima, A., and De Nicola, A. F. 1995. Estradiol abolishes autologous regulation of glucocorticoid receptors in brain. Life Sci. 57:2403–2412.

    Google Scholar 

  20. Roldan, A., Gogg, S., Ferrini, M., Schillaci, R., De Nicola, A. F. 1997. Glucocorticoid regulation of in vitro astrocyte phagocytosis. Biocell 21:83–89.

    Google Scholar 

  21. McGimsey, W. C., Cidlowski, J. A., Stumpf, W. E., Sar, M. 1991. Immunocytochemical localization of the glucocorticoid receptor in rat brain, pituitary, liver, and thymus with two new polyclonal antipeptide antibodies. Endocrinology 129:3064–3072.

    Google Scholar 

  22. O'Callaghan, J. P., Brinton, R. E., and McEwen, B. S. 1991. Glucocorticoids regulate the synthesis of glial fibrillary acidic protein in intact and adrenalectomized rats but do ot affect its expression following brain injury. J. Neurochem. 57:860–869.

    Google Scholar 

  23. Rozovsky, I., Laping, N. J., Krohn, K., Teter, B., O'Callaghan, J. P., and Finch, C. E. 1995. Transcriptional regulation of glial fibrillary acidic protein by corticosterone in rat astrocytes in vitro is influenced by the duration of time in culture and by astrocyte-neuron interactions. Endocrinology. 136:2066–20073.

    Google Scholar 

  24. Kopmels, B., Wollman, E. E., Guastavino, J. M., Delhang-Bouchaud, N., Fradelizi, D., and Mariani, J. 1990. Interleukin-1 hyperproduction by in vitro activated peripheral macrophages from cerebellar mutant mice. J.Neurochem. 55:1980–1985.

    Google Scholar 

  25. Ikeda, K., Kinoshita, M., Tagaya, N., Shiojima, T., Taga, T., Yasukawa, K., Suzuki, H., and Okano, A. 1996. Coadministration of interleukin-6 (IL-6) and soluble IL-6 receptor delays progression of wobbler mouse motor neuron disease. Brain Res. 736:91–97.

    Google Scholar 

  26. Mattson, M. P., Barger, S. W., Furukawa, K., Bruce, A. J., Wyss-Coray, T., Mark, R. J., and Mucke, L. 1997. Cellular signaling roles of TGFβ, TNFα and βAPP in brain injury responses and Alzheimer's disease. Brain Res. Rev. 23:47–61.

    Google Scholar 

  27. Kreutzberg, G. W. 1996. Microglia: a sensor for pathological events in the CNS. TINS 19:312–318.

    Google Scholar 

  28. Junier M. P., Coulpier, M., Le Forestier, N., Cadusseau, J., Suzuki, F., Peschansi, M., and Dreyfus, P. A. 1994. Transforming growth factor alpha (TGF α) expression in degenerating motorneurons of the murine mutant wobbler: a neuronal signal for astrogliosis?. J. Neurosci. 14:4206–4216.

    Google Scholar 

  29. McKeon, R. J., Schreiber, R. C., Rudge, J. S., and Silver, J. 1991. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11:3398–3411.

    Google Scholar 

  30. Ridet, J. L., Malhotra, S. K., Privat, A., and Gage, F. H. 1997. Reactive astrocytes: cellular and molecular cues to biological function. TINS 20:570–577.

    Google Scholar 

  31. Eddleston, M., and Mucke, L. 1993. Molecular profile of reactive astrocytes-Implications for their role in neurologic disease. Neurosci. 54:15–36.

    Google Scholar 

  32. Louw, D. F., Masada, T., and Sutherland, G. R. 1998. Ischemic neuronal injury is ameliorated by astrocyte activation. Ca. J. Neurol. Sci. 25:102–107.

    Google Scholar 

  33. Muller, H. W., Matthiesse, H. P., Schmalenbach, C., and Schroeder, W. O. 1991. Glial support of CNS neuronal survival, neurite growth and regeneration. Rest. Neurol. and Neurosci. 2:229–232.

    Google Scholar 

  34. Liedtke, W., Edelman, W., Bieri, P. L., Chiu, F-C., Cowan, N. J., Kucherlapati, R., and Raine, C. S. 1996. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17:607–615.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deniselle, M.C.G., Lavista-Llanos, S., Ferrini, M.G. et al. In Vitro Differences Between Astrocytes of Control and Wobbler Mice Spinal Cord. Neurochem Res 24, 1535–1541 (1999). https://doi.org/10.1023/A:1021199931682

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021199931682

Navigation