Skip to main content
Log in

Characterization of Myelin-Associated Glycoprotein (MAG) Proteolysis in the Human Central Nervous System

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Purified human central nervous system myelin contains an endogenous cysteine protease which degrades the 100-kDa myelin-associated glycoprotein into a slightly smaller 90-kDa derivative called dMAG, and which has been implicated in demyelinating diseases. The native proteolytic site in human MAG was determined in order to characterize this cysteine protease in humans further. This was accomplished by identifying the carboxy-terminus of purified dMAG. The results of these experiments, in conjunction with peptidolysis assays of myelin, demonstrated that the enzyme which proteolyses MAG is extracellular and has cathepsin L-like specificity. Furthermore, it was shown that this cathepsin L-like activity potentially was regulated by the endogenous extracellular inhibitor cystatin C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Quarles, R. H. 1997. Glycoproteins of myelin sheaths. J. Mol. Neurosci. 8:1–12.

    Google Scholar 

  2. Montag, D., Giese, K. P., Bartsch, U., Martini, R., Lang, Y., Bluthmann, H., Karthigasan, J., Kirschner, D. A., Wintergerst, E. S., Nave, K-A., Zielasek, J., Toyka, K. V., Lipp, H-P., and Schachner, M. 1994. Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 13:229–46.

    Google Scholar 

  3. Li, C., Tropak, M. B., Gerlai, R., Clapoff, S., Abramow-Newerly, W., Trapp, B., Peterson, A., and Roder, J. 1994. Myelination in the absence of myelin-associated glycoprotein. Nature. 369:47–50.

    Google Scholar 

  4. Lassmann, H., Bartsch, U., Montag, D., and Schachner, M. 1997. Dying-back oligodendrogliopathy: a late sequel of myelin-associated glycoprotein deficiency. Glia 19:104–10.

    Google Scholar 

  5. Fruttiger, M., Montag, D., Schachner, M., and Martini, R. 1995. Crucial role for the myelin-associated glycoprotein in the maintenance of axon-myelin integrity. Eur. J. Neurosci. 7:511–5.

    Google Scholar 

  6. Sato, S., Yanagisawa, K., and Miyatake, T. 1984. Conversion of myelin-associated glycoprotein (MAG) to a smaller derivative by calcium activated neutral protease (CANP)-like enzyme in myelin and inhibition by E-64 analogue. Neurochem. Res. 9:629–35.

    Google Scholar 

  7. Sato, S., Quarles, R. H., and Brady, R. O. 1982. Susceptibility of the myelin-associated glycoprotein and basic protein to a neutral protease in highly purified myelin from human and rat brain. J. Neurochem. 39:97–105.

    Google Scholar 

  8. Yanagisawa, K., Quarles, R. H., Johnson, D., Brady, R. O., and Whitaker, J. N. 1985. A derivative of myelin-associated glycoprotein in cerebrospinal fluid of normal subjects and patients with neurological disease. Ann. Neurol. 18:464–9.

    Google Scholar 

  9. Gendelman, H. E., Pezeshkpour, G. H., Pressman, N. J., Wolinsky, J. S., Quarles, R. H., Dobersen, M. J., Trapp, B. D., Kitt, C. A., Aksamit, A., and Johnson, R. T. 1985. A quantitation of myelin-associated glycoprotein and myelin basic protein loss in different demyelinating diseases. Ann. Neurol. 18:324–8.

    Google Scholar 

  10. Itoyama, Y., Sternberger, N. H., Webster, H. D., Quarles, R. H., Cohen, S. R., and Richardson, E. P., Jr. 1980. Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions. Ann. Neurol. 7:167–77.

    Google Scholar 

  11. Prineas, J. W., Kwon, E. E., Sternberger, N. H., and Lennon, V. A. 1984. The distribution of myelin-associated glycoprotein and myelin basic protein in actively demyelinating multiple sclerosis lesions. J. Neuroimmunol. 6:251–64.

    Google Scholar 

  12. Johnson, D., Sato, S., Quarles, R. H., Inuzuka, T., Brady, R. O., and Tourtellotte, W. W. 1986. Quantitation of the myelin-associated glycoprotein in human nervous tissue from controls and multiple sclerosis patients. J. Neurochem. 46:1086–93.

    Google Scholar 

  13. Moller, J. R., Yanagisawa, K., Brady, R. O., Tourtellotte, W. W., and Quarles, R. H. 1987. Myelin-associated glycoprotein in multiple sclerosis lesions: a quantitative and qualitative analysis. Ann. Neurol. 22:469–74.

    Google Scholar 

  14. Moller, J. R. 1996. Rapid conversion of myelin-associated glycoprotein to a soluble derivative in primates. Brain Res. 741:27–31.

    Google Scholar 

  15. Stebbins, J. W., Jaffe, H., Fales, H. M., and Moller, J. R. 1997. Determination of a native proteolytic site in myelin-associated glycoprotein. Biochemistry 36:2221–6.

    Google Scholar 

  16. Berger, A., and Schechter, I. 1970. Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 257:249–64.

    Google Scholar 

  17. Norton, W. T., and Poduslo, S. E. 1973. Myelination in rat brain: method of myelin isolation. J. Neurochem. 21:749–57.

    Google Scholar 

  18. Stone, K. L., and Williams, K. R. 1993. Enzymatic digestion of proteins and HPLC peptide isolation. Pages 43–69 in Matsudaira, P. (ed.), A practical guide to protein and peptide purification for microsequencing, Academic Press, Sandiego.

    Google Scholar 

  19. Stoney, K., and Nugent, K. 1995. Online preparation of complex biological samples prior to analysis by HPLC, LC/MS and/or protein sequencing. Pages 277–284 in Crabb, J. W. (ed.), Techniques in Protein Chemistry, Academic Press, San Diego.

    Google Scholar 

  20. Barrett, A. J. 1972. A new assay for cathepsin B1 and other thiol proteinases. Anal. Biochem. 47:280–93.

    Google Scholar 

  21. Kirschke, H., and Wiederanders, B. 1994. Cathepsin S and related lysosomal endopeptidases. Methods Enzymol. 244:500–11.

    Google Scholar 

  22. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–54.

    Google Scholar 

  23. Eng, J. K., McCormack, A. L., and Yates, J. R. 1994. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass. Spectrom. 5:976–989.

    Google Scholar 

  24. Barrett, A. J., and Kirschke, H. 1981. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 80:535–61.

    Google Scholar 

  25. Kirschke, H., and Barrett, A. J. 1985. Cathepsin L—a lysosomal cysteine proteinase. Prog. Clin. Biol. Res. 180:61–9.

    Google Scholar 

  26. Banik, N. L., Chakrabarti, A., and Hogan, E. L. 1992. Calcium-Activated Neutral Protease in Myelin: its Role and Function. Pages 571–598 in Martenson, R. E. (ed.), Myelin: Biology and Chemistry, CRC Press, Boca Raton.

    Google Scholar 

  27. Marks, N., and Berg, M. J. 1987. Rat brain cathepsin L: characterization and differentiation from cathepsin B utilizing opioid peptides. Arch. Biochem. Biophys. 259:131–43.

    Google Scholar 

  28. Sasaki, T., Kikuchi, T., Yumoto, N., Yoshimura, N., and Murachi, T. 1984. Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates. J. Biol. Chem. 259:12489–94.

    Google Scholar 

  29. Goll, D. E., Kleese, W. C., Okitani, A., Kumamoto, T., Cong, J., and Kapprell, H. 1990. Historical background and current status of the Ca+2–dependent proteinase system. Pages 3–24 in Mellgren, R. L. and Murachi, T. (eds.), Intracellular Calcium-Dependent Proteolysis, CRC Press, Inc., Boca Raton.

    Google Scholar 

  30. Dehrmann, F. M., Coetzer, T. H., Pike, R. N., and Dennison, C. 1995. Mature cathepsin L is substantially active in the ionic milieu of the extracellular medium. Arch. Biochem. Biophys. 324:93–8.

    Google Scholar 

  31. Tu, G. F., Aldred, R. A., Southwell, B. R., and Schreiber, G. 1992. Strong conservation of the expression of cystatin C gene in choroid plexus. Am. Phys. J 32:R195–R200.

    Google Scholar 

  32. Trapp, B. D. 1988. Distribution of the myelin-associated glycoprotein and P0 protein during myelin compaction in quaking mouse peripheral nerve. J. Cell. Biol. 107:675–85.

    Google Scholar 

  33. Berlet, H. H. 1992. Degradation of myelin proteins by proteinases. Pages 599–631 in Martenson, R. E. (ed.), Myelin: Biology and Chemistry, CRC Press, Boca Raton.

    Google Scholar 

  34. Bollengier, F. 1987. Cystatin C, alias post-gamma-globulin: a marker for multiple sclerosis? J. Clin. Chem. Clin. Biochem. 25:589–93.

    Google Scholar 

  35. Sato, S., Fujita, N., Kurihara, T., Kuwano, R., Sakimura, K., Takahashi, Y., and Miyatake, T. 1989. cDNA cloning and amino acid sequence for human myelin-associated glycoprotein. Biochem. Biophys. Res. Commun. 163:1473–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stebbins, J.W., Jaffe, H. & Möller, J.R. Characterization of Myelin-Associated Glycoprotein (MAG) Proteolysis in the Human Central Nervous System. Neurochem Res 23, 1005–1010 (1998). https://doi.org/10.1023/A:1021092624046

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021092624046

Navigation