Skip to main content
Log in

Chemokines and Chemokine Receptors: Their Role in Allergic Airway Disease

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

One of the hallmarks of allergic pulmonary disorders is the accumulation of an abnormally large number of leukocytes including eosinophils, neutrophils, lymphocytes, basophils, and macrophages in the lung (1). There is now substantial evidence that eosinophils, under the control of T lymphocytes, are major effector cells in the pathogenesis of asthma. Therefore, understanding the mechanisms by which eosinophils accumulate and are activated in tissues is a fundamental question very relevant to allergic diseases. Another characteristic of allergic inflammation is the activation of leukocytes resulting in the release of biologically active mediators, such as histamine from mast cells and basophils. It is now apparent that chemokines are potent leukocyte chemoattractants, cellular activating factors, histamine releasing factors, and regulators of homeostatic immunity, making them particularly important in the pathogenesis of airway inflammation in asthma (2). In this regard, chemokines are attractive new therapeutic targets for the treatment of allergic disease. This article focuses on recently emerging data on the importance of chemokines and their receptors in allergic airway inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bousquett J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P, Michel FB: Eosinophilic inflammation in asthma. N Engl J Med 323:1033–1039, 1990

    Google Scholar 

  2. Baggiolini M, Dahinden CA: CC chemokines in allergic inflammation. Immunol Today 15:127–133, 1994

    Google Scholar 

  3. Luster AD, Rothenberg ME: Role of monocyte chemoattractant protein and eotaxin subfamily of chemokines in allergic inflammation. J Leukoc Biol 62:620–633, 1997

    Google Scholar 

  4. Clore GM, Gronenborn AM: Three-dimensional structures of alpha and beta chemokines. FASEB J 9:57–62, 1995

    Google Scholar 

  5. Lodi PJ, Garrett DS, Kuszewski J, Tsang ML, Weatherbee JA, Leonard WJ, Gronenborn AM, Clore GM: High-resolution solution structure of the beta chemokine hMIP-1 beta by multidimensional NMR. Science 263:1762–1767, 1994

    Google Scholar 

  6. Handel TM, Domaille PJ: Heteronuclear (1H, 13C, 15N) NMR assignments and solution structure of the monocyte chemoattractant protein-1 (MCP-1) dimer. Biochemistry 35:6569–6584, 1996

    Google Scholar 

  7. Rothenberg ME, Luster AD, Leder P: Murine eotaxin: An eosinophil chemoattractant inducible in endothelial cells and in interleukin 4-induced tumor suppression. Proc Natl Acad Sci USA 92:8960–8964, 1995

    Google Scholar 

  8. Garcia-Zepeda EA, Combadiere CC, Rothenberg ME, Sarafi MN, Lavigne F, Hamid Q, Murphy PM, Luster AD: Human monocyte chemoattractant protein (MCP)-4: A novel CC chemokine with activities on monocytes, eosinophils, and basophils induced in allergic and non-allergic inflammation that signals through the CC chemokine receptors CKR-2 and-3. J Immunol 157:5613–5626, 1996

    Google Scholar 

  9. Garcia-Zepeda EA, Rothenberg ME, Weremowicz S, Sarafi MN, Morton CC, Luster AD: Genomic organization, complete sequence, and chromosomal location of the gene for human eotaxin (SCYA11), an eosinophil-specific CC chemokine. Genomics 41:471–476, 1997

    Google Scholar 

  10. Van Coillie EV, Fiten P, Nomiyama H, Sakaki Y, Miura R, Yoshie O, Damme JV, Opdenakker G: The human MCP-2 Gene (SCYA8): cloning, sequence analysis, tissue expression, and assignment to the CC chemokine contig on chromosome 17q11.2. Genomics 40:323–331, 1997

    Google Scholar 

  11. Naruse K, Ueno M, Satoh T, Nomiyama H, Tei H, Takeda M, Ledbetter DH, Coillie EV, Opdenakker G, Gunge N, Sakaki Y, Iio M, Miura R: A YAC contig of the human CC chemokine genes clustered on chromosome 17q11.2. Genomics 34:236–240, 1996

    Google Scholar 

  12. Nomiyama H, Osborne LR, Imai T, Kusuda J, Miura R, Tsui LC, Yoshie O: Assignment of the human CC chemokine MPIF-2/eotaxin-2 (SCYA24) to chromosome 7q11.23. Genomics 49:339–340, 1998

    Google Scholar 

  13. Proost P, Wuyts A, Van Damme J: Human monocyte chemotactic proteins-2 and-3: structural and functional comparison with MCP-1. J Leukoc Biol 59:67–74, 1996

    Google Scholar 

  14. Garcia-Zepeda EA, Rothenberg ME, Ownbey RT, Celestin J, Leder P, Luster AD: Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat Med 2:449–456, 1996

    Google Scholar 

  15. Stellato C, Collins P, Ponath PD, Soler D, Newman W, La RG, Li H, White J, Schwiebert LM, Bickel C, Liu M, Bochner BS, Williams T, Schleimer RP: Production of the novel C-C chemokine MCP-4 by airway cells and comparison of its biological activity to other C-C chemokines. J Clin Invest 99:926–936, 1997

    Google Scholar 

  16. Minshall E, Cameron L, Levigne F, Hamilos D, Rothenberg M, Luster A, Hamid Q: Eotaxin mRNA expression in chronic sinusitis and allergen-induced nasal responses in seasonal allergic rhinitis. Am J Respir Cell Mol Biol 17:683–690, 1997

    Google Scholar 

  17. Lilly CM, Nakamura H, Kesselman H, Nagler-Anderson C, Asano K, Garcia-Zepeda EA, Rothenberg ME, Drazen JM, Luster AD: Expression of eotaxin by human lung epithelial cells: Induction by cytokines and inhibition by glucocorticoids. J Clin Invest 99:1767–1773, 1997

    Google Scholar 

  18. Kulmburg PA, Huber NE, Scheer BJ, Wrann M, Baumruker T: Immunoglobulin E plus antigen challenge induces a novel intercrine/chemokine in mouse mast cells. J Exp Med 176:1773–1778, 1992

    Google Scholar 

  19. Burd PR, Rogers HW, Gordon JR, Martin CA, Jayaraman S, Wilson SD, Dvorak AM, Galli SJ, Dorf ME: Interleukin 3-dependent and-independent mast cells stimulated with IgE and antigen express multiple cytokines. J Exp Med 170:245–257, 1989

    Google Scholar 

  20. Oravecz T, Pall M, Roderiquez G, Gorrell MD, Ditto M, Nguyen NY, Boykins R, Unsworth E, Norcross MA: Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J Exp Med 186:1865–1872, 1997

    Google Scholar 

  21. Nelson PJ, Kim HT, Manning WC, Goralski TJ, Krensky AM: Genomic organization and transcriptional regulation of the RANTES chemokine gene. J Immunol 151:2601–2612, 1993

    Google Scholar 

  22. Ueda A, Okuda K, Ohno S, Shirai A, Igarashi T, Matsunaga K, Fukushima J, Kawamoto S, Ishigatsubo Y, Okubo T: NF-kappa B and Spl regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol 153:2052–2063, 1994

    Google Scholar 

  23. Anisowicz A, Messineo M, Lee SW, Sager R: An NF-kappa B-like transcription factor mediates IL-1/TNF-alpha induction of gro in human fibroblasts. J Immunol 147:520–527, 1991

    Google Scholar 

  24. Widmer U, Manogue KR, Cerami A, Sherry B: Genomic cloning and promoter analysis of macrophage inflammatory protein (MIP)-2, MIP-1 alpha, and MIP-1 beta, members of the chemokine superfamily of proinflammatory cytokines. J Immunol 150:4996–5012, 1993

    Google Scholar 

  25. Beato M: Gene regulation by steroid hormones. Cell 56:335–344, 1989

    Google Scholar 

  26. Mukaida N, Gussella GL, Kasahara T, Ko Y, Zachariae CO, Kawai T, Matsushima K: Molecular analysis of the inhibition of interleukin-8 production by dexamethasone in a human fibrosarcoma cell line. Immunology 75:674–679, 1992

    Google Scholar 

  27. Murphy PM: The molecular biology of leukoctye chemoattractant receptors. Annu Rev Immunol 12:593–633, 1994

    Google Scholar 

  28. Gerard C, Gerard NP: The pro-inflammatory seven-transmembrane segment receptors of the leukocyte. Curr Opin Immunol 6:140–145, 1994

    Google Scholar 

  29. Loetscher P, Seitz M, Baggiolini M, Moser B: Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes. J Exp Med 184:569–577, 1996

    Google Scholar 

  30. Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, Baggiolini M, Moser B: Chemokine receptor specific for IP10 and mig: Structure, function, and expression in activated T-lymphocytes. J Exp Med 184:963–969, 1996

    Google Scholar 

  31. Clark-Lewis I, Kim KS, Rajarathnam K, Gong JH, Dewald B. Moser B, Baggiolini M, Sykes BD: Structure-activity relationships of chemokines. J Leukoc Biol 57:703–711, 1995

    Google Scholar 

  32. Ponath PD, Qin S, Post TW, Wang J, Wu L, Gerard NP, Newman W, Gerard C, Mackay CR: Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J Exp Med 183:2437–2448, 1996

    Google Scholar 

  33. Daugherty BL, Siciliano SJ, DeMartino JA, Malkowitz L, Sirotina A, Springer MS: Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J Exp Med 183:2349–2354, 1996

    Google Scholar 

  34. Youn BS, Zhang SM, Lee EK, Park DH, Broxmeyer HE, Murphy PM, Locati M, Pease JE, Kim KK, Antol K, Kwon BS: Molecular cloning of leukotactin-1: A novel human beta-chemokine, a chemoattractant for neutrophils, monocytes, and lymphocytes, and a potent agonist at CC chemokine receptors 1 and 3. J Immunol 159:5201–5205, 1997

    Google Scholar 

  35. Zhang S, Youn BS, Gao JL, Murphy PM, Kwon BS: Differential effects of leukotactin-1 and macrophage inflammatory proteinlalpha on neutrophils mediated by CCR1. J Immunol 162:4938–4942, 1999

    Google Scholar 

  36. Heath H, Qin SX, Rao P, Wu LJ, Larosa G, Kassam N, Ponath PD, Mackay CR: Chemokine receptor usage by human eosinophils-the importance of CCR3 demonstrated using an antagonistic monoclonal antibody. J Clin Invest 99:178–184, 1997

    Google Scholar 

  37. Warringa RA, Koenderman L, Kok PT, Kreukniet J, Bruijnzeel PL: Modulation and induction of eosinophil chemotaxis by granulocyte-macrophage colony-stimulating factor and interleukin-3. Blood 77:2694–2700, 1991

    Google Scholar 

  38. Lamkhioued B, Renzi PM, Abi-Younes S, Garcia-Zepada EA, Allakhverdi Z, Ghaffar O, Rothenberg ME, Luster AD, Hamid Q: Increased expression of cotaxin in bronchoalveolar lavage and airways of asthmatics contributes to the chemotaxis of eosinophils to the site of inflammation. J Immunol 159:4593–4601, 1997

    Google Scholar 

  39. Uhing RJ, Gettys TW, Tomhave E, Synderman R, Didsbury JR: Differential regulation of cAMP by endogenous versus transfected formylpeptide chemoattractant receptors: Implications for Gi-coupled receptor signalling. Biochem Biophys Res Commun 183:1033–1039, 1992

    Google Scholar 

  40. Zimmermann N, Stark JM, Rothenberg ME: Molecular analysis of CC chemokine receptor-3 events in eosinophilic cells. (submitted for publication), 1999

  41. Ganju RK, Dutt P, Wu L, Newman W, Avraham H, Avraham S, Groopman JE: Beta-chemokine receptor CCR5 signals via the novel tyrosine kinase RAFTK. Blood 91:791–797, 1998

    Google Scholar 

  42. Alam R, Stafford S, Kamper G: The p38 MAP kinase and myosin light chain kinase (MLCK) critically regulate eosinophil chemotaxis in response to eotaxin. J Allergy Clin Immunol 103 (1, Pt 2):S56, 1999

    Google Scholar 

  43. Zimmermann N, Conkright JJ, Rothenberg ME: CC chemokine receptor-3 undergoes prolonged ligand-induced internalization. J Biol Chem 274:12611–12618, 1999

    Google Scholar 

  44. Daugherty BL, Springer MS: The beta-chemokine receptor genes CCR1 (CMKBR1), CCR2 (CMKBR2), and CCR3 (CMKBR3) cluster within 285 kb on human chromosome 3p21. Genomics 41:294–295, 1997

    Google Scholar 

  45. Bates P: Chemokine receptors and HIV-1: An attractive pair? Cell 86:1–3, 1996

    Google Scholar 

  46. Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu LJ, Mackay CR, Larosa G, Newman W, Gerard N, Gerard C, Sodroski J: The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:1135–1148, 1996

    Google Scholar 

  47. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R, O'Brien SJ: Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273:1856–1862, 1996

    Google Scholar 

  48. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR: Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377, 1996

    Google Scholar 

  49. Samson M, Soularue P, Vassart G, Parmentier M: The genes encoding the human CC-chemokine receptors CC-CKR1 to CC-CKR5 (CMKBR1-CMKBR5) are clustered in the p21.3–p24 region of chromosome 3. Genomics 36:522–526, 1996

    Google Scholar 

  50. Quillent C, Oberlin E, Braun J, Rousset D, Gonzalez-Canali G, Mctais P, Montagier L, Virelizier J, Arenzana-Seisdedos F, Beretta A: HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR-5 gene. Lancet 351:14–18, 1998

    Google Scholar 

  51. Smith MW, Dean M, Carrington M, Winkler C, Huttley GA, Lomb DA, Goedert JJ, O'Brien TR, Jacobson LP, Kaslow R, Buchbinder S, Vittinghoff E, Vlahov D, Hoots K, Hilgartner MW, O'Brien SJ: Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science 277:959–965, 1997

    Google Scholar 

  52. Zimmermann N, Bernstein JA, Rothenberg ME: Polymorphisms in the human CC chemokine receptor-3 gene. Biochim Biophys Acta 1442:170–176, 1998

    Google Scholar 

  53. Cook DN, Beck MA, Coffman TM, Kirby SL, Sheridan JF, Pragnell IB, Smithies O: Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science 269:1583–1585, 1995

    Google Scholar 

  54. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T: Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638, 1996

    Google Scholar 

  55. Rothenberg ME, MacLean JA, Pearlman E, Luster AD, Leder P: Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J Exp Med 185:785–790, 1997

    Google Scholar 

  56. Matthews AN, Friend DS, Zimmermann N, Sarafi MN, Luster AD, Pearlman E, Wert SE, Rothenberg ME: Eotaxin is required for the baseline level of tissue eosinophils. Proc Natl Acad Sci USA 95:6273–6278, 1998

    Google Scholar 

  57. Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL, North R, Gerard C, Rollins BJ: Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 187:601–608, 1998

    Google Scholar 

  58. Cacalano G, Lee J, Kikly K, Ryan AM, Pitts-Meek S, Hultgren B, Wood WI, Moore MW: Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 265:682–684, 1994

    Google Scholar 

  59. Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M: A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87:1037–1047, 1996

    Google Scholar 

  60. Gao JL, Wynn TA, Chang Y, Lee EJ, Broxmeyer HE, Cooper S, Tiffany HL, Westphal H, Kwon-Chung J, Murphy PM: Impaired host defense, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med 185:1959–1968, 1997

    Google Scholar 

  61. Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV Jr, Broxmeyer HE, Charo IF: Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 100:2552–2561, 1997

    Google Scholar 

  62. Butcher EC: Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell 67:1033–1036, 1991

    Google Scholar 

  63. Yamada H, Hirai K, Miyamasu M, Iikura M, Misaki Y, Shoji S, Takaishi T, Kasahara T, Morita Y, Ito K: Eotaxin is a potent chemotaxin for human basophils. Biochem Biophys Res Commun 231:365–368, 1997

    Google Scholar 

  64. Patel VP, Kreider BL, Li Y, Li H, Leung K, Salcedo T, Nardelli B, Pippalla V, Gentz S, Thotakura R, Parmelee D, Gentz R, Garotta G: Molecular and functional characterization of two novel human C-C chemokines as inhibitors of two distinct classes of myeloid progenitors. J Exp Med 185:1163–1172, 1997

    Google Scholar 

  65. Rothenberg ME, Ownbey R, Mehlhop PD, Loiselle PM, Van de Rijn M, Bonventre JV, Oettgen HC, Leder P, Luster AD: Eotaxin triggers eosinophil-selective chemotaxis and calcium flux via a distinct receptor and induces pulmonary eosinophilia in the presence of interleukin 5 in mice. Molec Med 2:334–348, 1996

    Google Scholar 

  66. Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, Williams TJ: Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med 182:1169–1174, 1995

    Google Scholar 

  67. Mould AW, Matthaei KI, Young IG, Foster PS: Relationship between interleukin-5 and eotaxin in regulating blood and tissue eosinophilia in mice. J Clin Invest 99:1064–1071, 1997

    Google Scholar 

  68. Jose PJ, Griffiths-Johnson DA, Collins PD, Walsh DT, Moqbel R, Totty NF, Truong O, Hsuan JJ, Williams TJ: Eotaxin: A potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med 179:881–887, 1994

    Google Scholar 

  69. Ponath PD, Qin SX, ringler DJ, Clark-Lewis I, Wang J, Kassam N, Smith H, Shi XJ, Gonzalo JA, Newman W, Gutierrez-Ramos JC, Mackay CR: Cloning of the human eosinophil chemoattractant, eotaxin-expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J Clin Invest 97:604–612, 1996

    Google Scholar 

  70. Bischoff SC, Krieger M, Brunner T, Dahinden CA: Monocyte chemotactic protein 1 is a potent activator of human basophils. J Exp Med 175:1271–1275, 1992

    Google Scholar 

  71. Dahinden CA, Geiser T, Brunner T, Vontscharner V, Caput D, Ferrara P, Minty A, Baggiolini M: Monocyte chemotactic protein 3 is a most effective basophil-and eosinophil-activating chemokine. J Exp Med 179:751–756, 1994

    Google Scholar 

  72. Elsner J, Hochstetter R, Kimmig D, Kapp A: Human eotaxin represents a potent activator of the respiratory burst of human eosinophils. Eur J Immunol 26:1919–1925, 1996

    Google Scholar 

  73. Alam R, Lett-Brown MA, Forsythe PA, Anderson-Walters DJ, Kenamore C, Kormos C, Grant JA: Monocyte chemotactic and activating factor is a potent histamine-releasing factor for basophils. J Clin Invest 89:723–728, 1992

    Google Scholar 

  74. Alam R, Forsythe P, Stafford S, Heinrich J, Bravo R, Proost P, Van Damme J: Monocyte chemotactic protein-2, monocyte chemotactic protein-3, and fibroblast-induced cytokine. Three new chemokines induce chemotaxis and activation of basophils. J Immunol 153:3155–3159, 1994

    Google Scholar 

  75. Palframan RT, Collins PD, Williams TJ, Rankin SM: Eotaxin induces a rapid release of eosinophils and their progenitors from the bone marrow. Blood 91:2240–2248, 1998

    Google Scholar 

  76. Quackenbush EJ, Aguirre V, Wershil BK, Gutierrez-Ramos JC: Eotaxin influences the development of embryonic hematopoietic progenitors in the mouse. J Leukoc Biol 62:661–666, 1997

    Google Scholar 

  77. Peled A, Gonzalo JA, Lloyd C, Gutierrez-Ramos JC: The chemotactic cytokine eotaxin acts as a granulocyte-macrophage colony-stimulating factor during lung inflammation. Blood 91:1909–1916, 1998

    Google Scholar 

  78. Graham GJ, Wright EG, Hewick R, Wolpe SD, Wilkie NM, Donaldson D, Lorimore S, Pragnell IB: Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature 344:442–444, 1990

    Google Scholar 

  79. Luster AD: Chemokines-chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445, 1998

    Google Scholar 

  80. Rollins BJ: Chemokines. Blood 90:909–928, 1997

    Google Scholar 

  81. Hromas R, Kim CH, Klemsz M, Krathwohl M, Fife K, Cooper S, Schnizlein BC, Broxmeyer HE: Isolation and characterization of Exodus-2, a novel C-C chemokine with a unique 37-amino acid carboxyl-terminal extension. J Immunol 159:2554–2558, 1997

    Google Scholar 

  82. Imai T, Baba M, Nishimura M, Kakizaki M, Takagi S, Yoshie O: The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J Biol Chem 272:15036–15042, 1997

    Google Scholar 

  83. Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M, Moser B: B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 187:655–660, 1998

    Google Scholar 

  84. Cook EB, Stahl JL, Lilly CM, Haley KJ, Sanchez H, Luster AD, Graziano FM, Rothenberg ME. Epithelial cells ate a major cellular source of the chemokine eotaxin in the guinea pig lung. Allergy Asthma Proc 19:15–22, 1998

    Google Scholar 

  85. Mishra A, Hogan S, Lee JJ, Foster PS, Rothenberg ME: Fundamental signals regulating eosinophil homing into the gastrointestinal tract. J Clin Invest 103:1719–1727, 1999

    Google Scholar 

  86. Sozzani S, Luini W, Borsatti A, Polentarutti N, Zhou D, Piemonti L, D'Amico G, Power CA, Wells TN, Gobbi M, Allavena P, Mantovani A: Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J Immunol 159:1993–2000, 1997

    Google Scholar 

  87. Lukacs NW, Strieter RM, Warmington K, Lincoln P, Chensue SW, Kunkel SL: Differential recruitment of leukocyte populations and alteration of airway hyperreactivity by C-C family chemokines in allergic airway inflammation. J Immunol 158:4398–4404, 1997

    Google Scholar 

  88. Gonzalo JA, Lloyd CM, Wen D, Albar JP, Wells TN, Proudfoot A, Martinez AC, Dorf M, Bjerke T, Coyle AJ, Gutierrez-Ramos JC: The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J Exp Med 188:157–167, 1998

    Google Scholar 

  89. Ward SG, Bacon K, Westwick J: Chemokines and T lymphocytes: more than an attraction. Immunity 9:1–11, 1998

    Google Scholar 

  90. Hogan SP, Mould AW, Young JM, Rothenberg ME, Ramsay AJ, Matthaei K, Young IG, Foster PS: Cellular and molecular regulation of eosinophil trafficking to the lung. Immunol Cell Biol 76:454–460, 1998

    Google Scholar 

  91. Dunn CJ, Elliott GA, Oostveen JA, Richards IM: Development of a prolonged eosinophil-rich inflammatory leukocyte infiltration in the guinea-pig asthmatic response to ovalbumin inhalation. Am Rev Respir Dis 137:541–547, 1988

    Google Scholar 

  92. Wegner CD, Gundel RH, Reilly P, Haynes N, Letts LG, Rothlein R: Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 247:456–459, 1990

    Google Scholar 

  93. Renz H, Smith HR, Henson JE, Ray BS, Irvin CG, Gelfand EW: Aerosolized antigen exposure without adjuvant causes increased IgE production and increased airway responsiveness in the mouse. J Allergy Clin Immunol 89:1127–1138, 1992

    Google Scholar 

  94. Chand N, Harrison JE, Rooney S, Pillar J, Jakubicki R, Nolan K, Diamantis W, Sofia RD: Anti-IL-5 monoclonal antibody inhibits allergic late phase bronchial eosinophilia in guinea pigs: A therapeutic approach. Eur J Pharmacol 211:121–123, 1992

    Google Scholar 

  95. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG: Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183:195–201, 1996

    Google Scholar 

  96. Lefort J, Bachelet CM, Leduc D, Vargaftig BB: Effect of antigen provocation of IL-5 transgenic mice on eosinophil mobilization and bronchial hyperresponsiveness. J Allergy Clin Immunol 97:788–799, 1996

    Google Scholar 

  97. Lilly CM, Chapman RW, Sehring SJ, Mauser PJ, Egan RW, Drazen JM: Effects of interleukin 5-induced pulmonary eosinophilia on airway reactivity in the guinea pig. Am J Physiol 270:L368-L375, 1996

    Google Scholar 

  98. Drazen JM, Arm JP, Austen KF: Sorting out the cytokines of asthma. J Exp Med 183:1–5, 1996

    Google Scholar 

  99. Corry DB, Folkesson ML, Warnock DJ, Erle DJ, Matthay MA, Wiener-Kronish JP, Locksley RC: Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivy. J Exp Med 183:109–117, 1996

    Google Scholar 

  100. Hogan SP, Matthaei KI, Young JM, Koskinen A, Young IG, Foster PS: A novel T cell-regulated mechanism modulating allergen-induced airways hyperreactivity in BALB/c mice independently of IL-4 and IL-5. J Immunol 161:1501–1509, 1998

    Google Scholar 

  101. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD: Interleukin-13: central mediator of allergic asthma. Science 282:2258–2261, 1998

    Google Scholar 

  102. Chiaramonte MG, Schopf LR, Neben TY, Cheever AW, Donaldson DD, Wynn TA: IL-13 is a key regulatory cytokine for Th2 cell-mediated pulmonary granuloma formation and IgE responses induced by Schistosoma mansoni eggs. J Immunol 162:920–930, 1999

    Google Scholar 

  103. Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM, Corry DB: Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282:2261–2263, 1998

    Google Scholar 

  104. Li L, Xia Y, Nguyen A, Lai YH, Feng L, Mosmann TR, Lo D: Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. J Immunol 162:2477–2487, 1999

    Google Scholar 

  105. MacLean JA, Ownbey R, Luster AD: T cell-dependent regulation of eotaxin in antigen-induced pulmonary eosinophila. J Exp Med 184:1461–1469, 1996

    Google Scholar 

  106. Nakajima H, Iwamoto I, Tomoe S, Matsumura R, Tomioka H, Takatsu K, Yoshida S: CD4+ T-lymphocytes and interleukin-5 mediate antigen-induced eosinophil infiltration into the mouse trachea. Am Rev Respir Dis 146:374–377, 1992

    Google Scholar 

  107. Gavett SH, Chen X, Finkelman F, Wills-Karp M: Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol 10:587–593, 1994

    Google Scholar 

  108. Garlisi CG, Falcone A, Kung TT, Stelts D, Pennline KJ, Beavis AJ, Smith SR, Egan RW, Umland SP: T cells are necessary for Th2 cytokine production and eosinophil accumulation in airways of antigen-challenged allergic mice. Clin Immunol Immunopathol 75:75–83, 1995

    Google Scholar 

  109. Iwamoto I, Tomoe S, Tomioka H, Takatsu K, Yoshida S: Role of CD4+ T lymphocytes and interleukin-5 in antigen-induced eosinophil recruitment into the site of cutaneous late-phase reaction in mice. J Leukocyte Biol 52:572–578, 1992

    Google Scholar 

  110. Lukacs NW, Strieter RM, Chensue SW, Kunkel SL: Interleukin-4-dependent pulmonary eosinophil infiltration in a murine model of asthma. Am J Respir Cell Mol Biol 10:526–532, 1994

    Google Scholar 

  111. Marsh DG, Hsu SH, Roebber M: HLA-Dw2: A genetic marker for human immune response to short pollen allergen Ra5. I. Response resulting primarily from antigenic exposure. J Exp Med 155:1439–1451, 1982

    Google Scholar 

  112. Reishaus E, Innis M, MacIntyre N, Liggett SB: Mutations in the gene encoding for the b2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 8:334–339, 1993

    Google Scholar 

  113. Young RP, Dekker JW, Wordsworth BP: HLA-DR and HLA-DP genotypes and immunoglobulin E responses to common major allergens. Clin Exp Allergy 24:431–439, 1994

    Google Scholar 

  114. Shirakawa T, Li A, Dubowitz M, Dekker JM, Shaw AE, Faux JA, Ra C, Cookson W, Hopkin JM: Association between atopy and variants of the β subunit of the high-affinity IgE receptor. Nat Genet 7:125–129, 1994

    Google Scholar 

  115. Meyers DA, Postma DS, Panhuysen CI, Xu J, Amelung PJ, Levitt RC, Bleecker ER: Evidence for a locus regulating total serum IgE levels mapping to chromosome 5. Genomics 23:464–470, 1994

    Google Scholar 

  116. Postma DS, Bleecker ER, Amelung PJ, Holroyd KJ, Xu J, Panhuysen CI, Meyers DA, Levitt RC: Genetic susceptibility to asthma—Bronchial hyperresponsiveness coinherited with a major gene for atopy. N Engl J Med 333:894–900, 1995

    Google Scholar 

  117. Khurana Hershey GK, Friedrich MF, Esswein LA, Thomas ML, Chatila TA: Association of atopy with gain-of-function mutation in the interleukin-4 receptor alpha chain. N Engl J Med 337:1720, 1997

    Google Scholar 

  118. Nickel R, Barnes KC, Sengler CA, Casolaro V, Freidhoff LR, Weber P, Naidu RP, Caraballo L, Ehrlich E, Plitt J, Schleimer RP, Huang SK, Beaty T: Evidence for linkage of chemokine polymorphisms to asthma in populations of African descent. J Allergy Clin Immunol 103 (1, Pt 2):S174, 1999

    Google Scholar 

  119. Lin AY, Nutman TB, Kaslow D, Mulvihill JJ, Fontaine L, White BJ, Knutsen T, Theil KS, Raghuprasad PK, Goldstein AM, Tucker MA: Familial eosinophilia: clinical and laboratory results on a U.S. kindred. Am J Med Genet 76:229–237, 1998

    Google Scholar 

  120. Rioux JD, Stone VA, Daly MJ, Cargill M, Green T, Nguyen H, Nutman T, Zimmerman PA, Tucker MA, Hudson T, Goldstein AM, Lander E, Lin AY: Familial eosinophilia maps to the cytokine gene cluster on human chromosomal region 5q31–q33. Am J Hum Genet 63:1086–1094, 1998

    Google Scholar 

  121. Ying S, Robinson DS, Meng Q, Rottman J, Kennedy R, Ringler DJ, Mackay CR, Daugherty BL, Springer MS, Durham SR, Williams TJ, Kay AB: Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co-localization of mRNA to bronchial epithelial and endothelial cells. Eur J Immunol 27:3507–3516, 1997

    Google Scholar 

  122. Alam R, York J, Boyars M, Stafford S, Grant JA, Lee J, Forsythe P, Sim T, Ida N: Increased MCP-1, RANTES, and MIP-1 alpha in bronchoalveolar lavage fluid of allergic asthmatic patients. Am J Respir Crit Care Med 153:1398–1404, 1996

    Google Scholar 

  123. Sabroe I, Conroy DM, Gerard NP, Li Y, Collins PD, Post TW, Jose PJ, Williams TJ, Gerard CJ, Ponath PD: Cloning and characterization of the guinea pig eosinophil eotaxin receptor, C-C chemokine receptor-3: Blockade using a monoclonal antibody in vivo. J Immunol 161:6139–6147, 1998

    Google Scholar 

  124. Proudfoot AE, Power CA, Hoogewerf AJ, Montjovent MO, Borlat F, Offord RE, Wells TN: Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J Biol Chem 271:2599–2603, 1996

    Google Scholar 

  125. Elsner J, Petering H, Hochstetter R, Kimmig D, Wells TN, Kapp A, Proudfoot AE: The CC chemokine antagonist Met-RANTES inhibits eosinophil effector functions through the chemokine receptors CCR1 and CCR3. Eur J Immunol 27:2892–2898, 1997

    Google Scholar 

  126. Moore PS, Boshoff C, Weiss RA, Chang Y: Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274:1739–1744, 1996

    Google Scholar 

  127. Kledal TN, Rosenkilde MM, Coulin F, Simmons G, Johnsen AH, Alouani S, Power CA, Luttichau HR, Gerstoft J, Clapham PR, Clark-Lewis I, Wells TNC, Schwartz TW: A broad-spectrum chemokine antagonist encoded by Kaposi's sarcoma-associated herpesvirus. Science 277:1656–1659, 1997

    Google Scholar 

  128. White JR, Lee JM, Young PR, Hertzberg RP, Jurewicz AJ, Chaikin MA, Widdowson K, Foley JJ, Martin LD, Griswold DE, Sarau HM: Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem 273:10095–10098, 1998

    Google Scholar 

  129. Hesselgesser J, Ng HP, Liang M, Zheng W, May K, Bauman JG, Monahan S, Islam I, Wei GP, Ghannam A, Taub DD, Rosser M, Snider RM, Morrissey MM, Perez HD, Horuk R: Identification and characterization of small molecule functional antagonists of the CCR1 chemokine receptor. J Biol Chem 273:15687–15692, 1998

    Google Scholar 

  130. Rutledge BJ, Rayburn H, Rosenberg R, North RJ, Gladue RP, Corless CL, Rollins BJ: High level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogens. J Immunol 155:4838–4843, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothenberg, M.E., Zimmermann, N., Mishra, A. et al. Chemokines and Chemokine Receptors: Their Role in Allergic Airway Disease. J Clin Immunol 19, 250–265 (1999). https://doi.org/10.1023/A:1020531322556

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020531322556

Navigation