Skip to main content
Log in

Origins and diversification of sulfate-respiring microorganisms

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

If the diversification of microbial life can be depicted as a single tree, as inferred by comparative sequencing of ribosomal RNAs, this could provide a framework for defining the order of emergence of new metabolic pathways. However, recent recognition that lateral gene transfer has been a significant force in microbial evolution has created uncertainty about the interpretation of taxonomies based on gene sequences. In this context, the origins and evolution of sulfate respiration will be evaluated considering the evolutionary history of a central enzyme in this process, the dissimilatory sulfite reductase. These studies suggest at least two major lateral transfer events during the early diversification of sulfate respiring microorganisms. The high sequence conservation of this enzyme has also provided a mechanism to directly explore the natural diversity of sulfate-respiring organisms using molecular techniques, avoiding the bias of culture-based identification. These studies suggest that the habitat range and evolutionary diversity of this key functional group of organisms is greater than now appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atlas, RM & Bartha R (1993) Microbial Ecology Fundamentals and Applications. 3rd Edition. The Benjamin/Cummings Publishing Company, Inc., Redwood City. pp. 563.

    Google Scholar 

  • Canfield DE & Desmarais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251: 1471–1473.

    PubMed  CAS  Google Scholar 

  • Chang YJ, Peacock AD, Long PE, Stephen JR, McKinley JP, Macnaughton SJ, Hussain A, Saxton AM & White DC (2001) Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl. Environ. Microbiol. 67: 3149–3160.

    Article  PubMed  CAS  Google Scholar 

  • Chapelle FH, Morris JT, McMahon PB & Zelibor JL (1988) Bacterial metabolism and the del-13C composition of groundwater, Floridian aquifer, South Carolina. Geology 16: 117–121.

    Article  CAS  Google Scholar 

  • Cottrell MT & Cary SC (1999) Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelid Alvinella pompejana. Appl. Environ. Microbiol. 65: 1127–1132.

    PubMed  CAS  Google Scholar 

  • Dahl C, Kredich NM, Deutzmann R & Trüper HG (1993) Dissimilatory sulphite reductase from Archaeoglobus fulgidus: physicochemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes. J. Gen. Microbiol. 139: 1817–1828.

    PubMed  CAS  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89: 5685–5689.

    Article  PubMed  CAS  Google Scholar 

  • Fry NK, Fredrickson JK, Fishbain S, Wagner M & Stahl DA (1997) Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Appl. Environ. Microbiol. 63: 1498–1504.

    PubMed  CAS  Google Scholar 

  • GhiorseWC & Wilson JT (1988) Microbial ecology of the terrestrial subsurface. Adv. Appl. Microbiol. 33: 107–172.

    Article  PubMed  CAS  Google Scholar 

  • Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manolson MF, Poole RJ, Date R, Oshima T, Konishi J, Denda K & Yoshida M (1989) Evolution of the vacuolar H+-ATPase - Implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA 86: 6661–6665.

    Article  PubMed  CAS  Google Scholar 

  • Hansen TA (1994) Metabolism of sulfate-reducing prokaryotes. Antonie van Leeuwenhoek 66: 165–185.

    Article  PubMed  CAS  Google Scholar 

  • Hipp WM, Pott AS, ThumSchmitz N, Faath I, Dahl C & Truper HG (1997) Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiology UK 143: 2891–2902.

    Article  CAS  Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M, Osawa S & Miyata T (1989) Evolutionary relationship of Archaebacteria, Eubacteria, and Eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl. Acad. Sci. USA 86: 9355–9359.

    Article  PubMed  CAS  Google Scholar 

  • Karkhoff-Schweizer RR, Huber DPW & Voordouw G (1995) Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Appl. Environ. Microbiol. 61: 290–296.

    PubMed  CAS  Google Scholar 

  • Klein M, Friedrich M, Roger AJ, Fishbain S, Hugenholtz P, Abicht H, Blackall LL, Stahl DA & Wagner M (2001) Multiple lateral transfer events of dissimilatory sulfite reductase genes between major lineages of bacteria. J. Bacteriol. 183: 6028–6034.

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov SI, Ivanov MV & Lyalikova NN (1963) Introduction to Geological Microbiology. McGraw-Hill, International Series in the Earth Sciences, New York.

    Google Scholar 

  • Larsen O, Lien T & Birkeland NK (1999) Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: phylogenetic and structural implications from gene sequences. Extremophiles 3: 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Larsen O, Lien T & Birkeland NK (2000) Characterization of the desulforubidin operons from Desulfobacter vibrioformis and Desulfobulbus rhabdoformis. FEMS Microbiol. Lett. 186: 41-46.

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Coates JD, Woodward JC & Phillips EJP (1995) Benzene oxidation coupled to sulfate reduction. Appl. Environ. Microbiol. 61: 953–958.

    PubMed  CAS  Google Scholar 

  • Minz D, Green SJ, Muyzer G, Cohen Y, Rittmann BE & Stahl DA (1999) Unexpected Population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl. Environ. Microbiol. 65: 4659–4665.

    PubMed  CAS  Google Scholar 

  • Murphy EM, Schramke JA, Fredrickson JK, Bledsoe HW, Francis AJ, Sklarew DS & Linehan JC (1992) The influence of microbial activity and sedimentary organic carbon on the isotope geochemistry of the Middendorf Aquifer. Water Resour. Res. 28: 723–740.

    Article  CAS  Google Scholar 

  • Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv. Microbial Ecol. 9: 1–55.

    CAS  Google Scholar 

  • Pedersen K & Ekendahl S (1990) Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microb. Ecol. 20: 37–52.

    Google Scholar 

  • Perez-Jimenez JR, Young LY & Kerkhof LJ (2001) Molecular characterization of sulfate-reducing bacteria in anaerobic hydrocarbon-degrading consortia and pure cultures using the dissimilatory sulfite reductase (dsr AB) genes. FEMS Microbiol. Ecol. 35: 145–150.

    PubMed  CAS  Google Scholar 

  • Phelps CD, Kerkhof LJ & Young LY (1998) Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbiol. Ecol. 27: 269–279.

    Article  CAS  Google Scholar 

  • Schramm A, Santegoeds CM, Nielsen HK, Ploug M, Wagner M, Pribyl M, Wanner J, Amann R & De Beer D (1999) On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. Appl. Environ. Microbiol. 65: 4189–4196.

    PubMed  CAS  Google Scholar 

  • Shen Y, Buick R & Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410: 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Stahl DA (1993) The natural history of microorganisms. ASM News 59: 609–613.

    Google Scholar 

  • Stevens TO & McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270: 450–454.

    CAS  Google Scholar 

  • Stevens TO, McKinley JP & Fredrickson JK (1993) Bacteria associated with deep, alkaline, anaerobic groundwaters in southeast Washington. Microb. Ecol. 25: 35–50.

    Article  Google Scholar 

  • Thomsen TR, Finster K & Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl. Environ. Microbiol. 67: 1646–1656.

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA & Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180: 2975–2982.

    PubMed  CAS  Google Scholar 

  • Wallrabenstein C, Hauschild E & Schink B (1995) Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch. Microbiol. 164: 346–352.

    Article  CAS  Google Scholar 

  • Weiner JM & Lovley DR (1998) Anaerobic benzene degradation in petroleum-contaminated aquifer sediments after inoculation with a benzene-oxidizing enrichment. Appl. Environ. Microbiol. 64: 775–778.

    PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271.

    PubMed  CAS  Google Scholar 

  • Zobell CE (1958) Ecology of sulfate reducing bacteria. Producers Monthly 22: 12–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stahl, D.A., Fishbain, S., Klein, M. et al. Origins and diversification of sulfate-respiring microorganisms. Antonie Van Leeuwenhoek 81, 189–195 (2002). https://doi.org/10.1023/A:1020506415921

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020506415921

Keywords

Navigation