Skip to main content
Log in

Network genomics – A novel approach for the analysis of biological systems in the post-genomic era

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Network Genomics studies genomics and proteomics foundations of cellular networks in biological systems. It complements systems biology in providing information on elements, their interaction and their functional interplay in cellular networks. The relationship between genomic and proteomic high-throughput technologies and computational methods are described, as well as several examples of specific network genomic application are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alter O, Brown PO & Botstein D (2000) Proc. Nat. Acad. Sci. USA 97: 10101–10106

    Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) J. Mol. Biol. 215: 403–410

    Google Scholar 

  3. Aravind L (2000) Genome Res. 10: 1074–1077

    Google Scholar 

  4. Beatty W, Morrison R & Byrne G (1994) Microbiol. Rev. 8: 686–699

    Google Scholar 

  5. Beth M, Strauss G, Huber R, Stetter K & Fuchs G (1993) Arch. Microbiol. 160: 306–311

    Google Scholar 

  6. Botstein D, Brown P, Sherlock G, Ball C & Binkley G Stanford Microarray Database. http://genome-www5.stanford.edu/ Micro-Array/SMD/

  7. Boulton S, Gartner A, Reboul J, Vaglio P, Dyson N, Hill D & Vidal M (2002) Science 295: 127–131

    Google Scholar 

  8. Byrne G, Oeyjahhkn L & Landry G (1986) Infect. Immun. 53: 347–351

    Google Scholar 

  9. DeRisi J, Iyer V & Brown P (1997) Science 278: 680–686

    Google Scholar 

  10. D'haeseler P, Liang S & Somogyi R (2000) Bioinformatics 16: 707–726

    Google Scholar 

  11. Edward J & Palsson B (2000) Proc. Nat. Acad. Sci USA 97: 5528–5533

    Google Scholar 

  12. Edwards JS, Ibarra RU & Palsson BO (2001) Nat. Biotechnol. 19: 125–130

    Google Scholar 

  13. Enright AJ, Iliopoulos I, Kyrpides NC & Ouzounis CA (1999) Nature 402: 86–89

    Google Scholar 

  14. Fell DA (1990) Comm. Theor. Biol.: 1–14

  15. Fields S & Song O (1989) Nature 340: 245–246

    Google Scholar 

  16. Fleischmann R, Adams M, White O, Clayton R et al. (1995) 269: 496–512

  17. Forst CV (2001) A Tutorial on Network Genomics. International Conference on Intelligent Systems for Molecular Biology, Copenhagen, Denmark

  18. Forst CV & Schulten K (1999) J. Comp. Biol. 6: 343–360

    Google Scholar 

  19. Forst CV & Schulten K (2001) J. Mol. Evol. 52: 471–489

    Google Scholar 

  20. Gavin A, Bosche M, Krause R, Grandi P, Marzioh M, Bauer A, Schultz J, Michon JRA, Cruciat C et al. (2002) Nature 415: 141–147

    Google Scholar 

  21. Gest H (1981) FEMS Microbiol. Lett. 12: 209–215

    Google Scholar 

  22. Griffin T & Aebersold R (2001) J. Biol. Chem. 276: 45497–45500

    Google Scholar 

  23. Haab B, Dunham M & Brown P (2001) Genome Biol. 2: 4

    Google Scholar 

  24. Haldane J (1928) Rationalist Ann. 148: 3–10

    Google Scholar 

  25. Han D, Eng J, Zhou H & Aebersold R (2001) Nat. Biotechnol. 19: 946–951

    Google Scholar 

  26. Hartman H (1975) J. Mol. Evol. 4: 359–370

    Google Scholar 

  27. Ho, Y, Gruhler A, Heilbut A, Bader G, Moore L, Adams S, Millar A, Taylor P, Bennet K, Boutilier K et al. (2002) Nature 415: 180–183

    Google Scholar 

  28. Holter N, Mitra M, Maritan A, Cieplak M, Banavar J & Fedoroff N (2000) Proc. Natl. Acad. Sci. USA 97(15): 8409–8414

    Google Scholar 

  29. Igietseme J, Ananaba G, Candal D, Lyn D & Black C (1998) Microbiol. Immunol. 42: 617–625

    Google Scholar 

  30. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M & Sakaki Y (2001) Proc. Nat. Acad. Sci. USA 98: 4569–4574

    Google Scholar 

  31. Iyer V, Horak C, Scafe C, Botstein D, Snyder M & Brown P (2001) Nature 409: 533–538

    Google Scholar 

  32. Yates IJR (200) Trends Genet. 16: 5–8

    Google Scholar 

  33. Karp P, Riley M & Paley S The BioCyc knowledge library. http://biocyc.org/

  34. Karp P, Riley M, Paley S & Pellegrini-Toole A (2002) Nucl. Acids Res. 30(1): 59

    Google Scholar 

  35. Karp P, Riley M & Pellegrini-Toole A (1996) Nucl. Acids Res. 24: 32–40

    Google Scholar 

  36. Karp P, Riley M, Saier M, Paulsen I, Paley S & Pellegrini-Toole A (2002) Nucl. Acids Res. 30(1): 56

    Google Scholar 

  37. MacBeath G & Schreiber S (2000) Science 289: 1760–1763

    Google Scholar 

  38. Marcotte E, Pellegrini M, Thompson M, Yeates T & Eisenber G (1999) Nature 402: 83–86

    Google Scholar 

  39. Marcotte EM (2000) Curr. Opinion Struct. Biol. 10: 259–365

    Google Scholar 

  40. Mavrovouniotis M, Stephanopoulos G & Stephanopoulos G (1990) Biotechnol. Bioeng. 36: 1119–1132

    Google Scholar 

  41. Meléndez-Hevia E, Waddell TG & Cascante M (1996) J. Mol. Evol. 43: 293–303

    Google Scholar 

  42. Miller SL (1953) Science 117: 528–529

    Google Scholar 

  43. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H & Kanehisa M (1999) Nucl. Acids Res. 27: 29–34

    Google Scholar 

  44. Oparin AI (1967) The origin of life. In: Bernal J (ed.), The Origin of Life. World, Cleveland, (also published in: Proiskhozhdenie Zhizny. IZDMoskovishii Rabochii, Moscow, 1924)

    Google Scholar 

  45. Orgel LE (1968) J. Mol. Biol. 38: 381–383

    Google Scholar 

  46. Overbeek R, Larsen N, Pusch GD, D'souza M, Kyrpides ES, Jr., N, Fonstein M, Maltsev N & Selkov E (2000) Nucl. Acids Res. 28(1): 123–125

    Google Scholar 

  47. Overbeek R, Larsen N, Smith W, Maltsev N & Selkov E (1997) Gene 191: GC1–GC9

    Google Scholar 

  48. Pe'er D, Regev A, Elidan G & Friedman N (2001) Bioinformatics 17 Suppl.: S215–S224

    Google Scholar 

  49. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D & Yeates TO (1999) Proc. Natl. Acad. Sci. 96: 4285–4288

    Google Scholar 

  50. Pfeiffer T, Sánchez-Valdenebro I, No JN, Montero F & Schuster S (1999) Bioinformatics 15(3): 251–257

    Google Scholar 

  51. Roberts C, Nelson B, Marton M, Stoughton R, Meyer M, Bennett H, He Y, Dai H, Walker W, Hughes T, Tyers M, Boone C & Friend S (2000) Science 287: 873–880

    Google Scholar 

  52. Romano A & Conway T (1996) Res. Microbiol. 147: 448–455

    Google Scholar 

  53. Schena M, Shalon D, Davis D & Brown P (1995) Science 270: 467–470

    Google Scholar 

  54. Schilling CH & Palsson BO (2000) J. Theor. Biol. 203: 249–283

    Google Scholar 

  55. Schuster S, Fell DA & Dandekar T (2000) Nature Biotechnol. 18: 326–332

    Google Scholar 

  56. Schuster S & Hilgetag C (1994) J. Biol. Syst. 2: 165–182

    Google Scholar 

  57. Smith TF & Waterman MS (1981) J. Mol. Biol. 147: 195–198

    Google Scholar 

  58. Snel B, Bork P & Huynen M (2000) Trends Gen. 16: 9–11

    Google Scholar 

  59. Somogyi R, Fuhrman S, Askenazi M & Wuensche A (1997) Nonlinear Analysis 30: 1815–1824

    Google Scholar 

  60. Somogyi R & Sniegoski C (1996) Complexity 1: 45–63

    Google Scholar 

  61. Tatusov RL, Galperin MY, Natale DA & Koonin EV (2000) Nucl. Acids Res. 28: 33–36

    Google Scholar 

  62. Uetz P, Giot L, Cagney G, Mansfield T, Knight RJA, Lockshon D, Narayan V, Srinivasan M, Pochart P et al. (2000) 403: 623–627

  63. van Helden J, Naim A, Mancusco R, Eldridge M, Wernisch L, Gilbert D & Wodak SJ (2000) Biol. Chem. 381(9–10): 921–935 (http://www.ebi.ac.uk/research/pfbp)

    Google Scholar 

  64. Varma A & Palsson BO (1994) Bio-Technol. 12: 994–998

    Google Scholar 

  65. Weitzman P (1985) In: Schleifer KH and Stackebrandt E (eds), Evolution of Prokaryotes, Vol. 29 FEMS Symposium, pp. 253–275, Academic Press, Orlando, Florida

    Google Scholar 

  66. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bindlingmaier S, Houfek T et al. (2001) Science 293: 2101–2105

    Google Scholar 

  67. Zhu H, Klemic J, Chang S, Bertone P, Casamayor, Klemic K, Smith D, Gerstein M, Reed M & Snyder M (2000) Nat. Genet. 26: 283–289

    Google Scholar 

  68. Zhu H & Snyder M (2002) Curr. Op. Cell Biol. 14: 173–179

    Google Scholar 

  69. Zien A, Küffner R, Zimmer R & Lengauer T (2000) In: Proceedings of ISMB'00, pp. 407–417. ISCB, American Association for Artificial Intelligence

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian V. Forst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forst, C.V. Network genomics – A novel approach for the analysis of biological systems in the post-genomic era. Mol Biol Rep 29, 265–280 (2002). https://doi.org/10.1023/A:1020437311167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020437311167

Navigation