Skip to main content
Log in

pGp as the main product of bovine tRNA kinase

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

One of the Ser-tRNAs, Ser-tRNASec, is converted to Sec-tRNASec by Sec synthase. This Ser-tRNASec is also converted to phosphoser-tRNASec by tRNA kinase. In this study, we analyzed of the products of phosphorylation with tRNA kinase. [3H]Ser-tRNASec purified on Sephacryl S-200 was phosphorylated with [γ-32P]ATP by tRNA kinase. The product [32P][3H]phosphoser-tRNA was purified on Sephacryl S-200 and hydrolyzed with ribonuclease T2. The chromatogram of this hydrolyzate on DEAE-cellulose in 7M urea buffer showed four peaks. The first peak of the pass-through fraction was seryl-adenosine liberated from the 3′-terminal of the tRNA. The second peak, eluted before the third peak containing inorganic phosphate, was phosphoseryl-adenosine. The major compound in the fourth peak was pGp. As a control experiment, non-acylated tRNASec was used as a substrate of phosphorylation and the product was analyzed. The chromatogram of the digest with ribonuclease T2 showed no peak of phosphoseryl-adenosine, but a peak of pGp was seen with the peak of inorganic phosphate. Thus, the major product in the presence of tRNA kinase was pGp, and a small but significant proportion of the radioactivity was found as phosphoserine in the presence of seryl residue on the 3′-CCA terminal of tRNASec. These results indicated that tRNA kinase phosphorylates not only Ser-tRNA to phosphoser-tRNA but also Gp of the 5′-termini of tRNA to pGp. This study gives a new role to mammalian tRNA kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hatfield D & Portugal F (1970) Proc. Natl. Acad. Sci. USA 67: 1200–1206

    Google Scholar 

  2. Maenpaa PH & Bernfield MR (1970) Proc. Natl. Acad. Sci. USA 67: 688–695

    Google Scholar 

  3. Sharp SJ & Stewart TS (1977) Nucleic Acids Res. 4: 2123–2136

    Google Scholar 

  4. Mizutani T & Hashimoto A (1984) FEBS Lett. 169: 319–322

    Google Scholar 

  5. Lee BJ, Worland PJ, Davis JN, Stadtman, TC & Hatfield DJ (1989) J. Biol. Chem. 264: 9724–9727

    Google Scholar 

  6. Mizutani T, Kurata H, & Yamada K (1991) FEBS Lett. 289: 59–63

    Google Scholar 

  7. Mizutani T, Kurata H, Yamada K & Totsuka T (1992) Biochem. J. 284: 827–834

    Google Scholar 

  8. Mizutani T & Tachibana Y (1986) FEBS Lett. 207: 162–166

    Google Scholar 

  9. Mizutani T & Hitaka T (1988) FEBS Lett. 232: 243–248

    Google Scholar 

  10. Mizutani T, Maruyama N, Hitaka T & Sukenaga Y (1990) FEBS Lett. 269: 277

    Google Scholar 

  11. Hatfield D, Diamond A & Dudock B (1982) Proc. Natl. Acad. Sci. USA 79: 6215–6219

    Google Scholar 

  12. Lee BJ, de la Pena P, Tobian J, Zasloff M & Hatfield D (1987) Proc. Natl. Acad. Sci. USA 84: 6384–6388

    Google Scholar 

  13. Mizutani T, Kanbe K, Kimura Y, Tachibana Y & Hitaka T (1988) Chem. Pharm. Bull. 36: 824–827

    Google Scholar 

  14. Wu XQ & Gross HJ (1994) EMBO J. 13: 241–248

    Google Scholar 

  15. Hatfield D (ed) (2001) ‘Selenium: Its Molecular Biology and Role in Human Health’, Kluwer Academic Publishers, Boston, USA

    Google Scholar 

  16. Diamond A, Dudock B & Hatfield D (1981) Cell 25: 497–506

    Google Scholar 

  17. Amberg R, Urban C, Reuner B, Schaff P, Pomerantz S, McCloskey A & Gross HJ (1993) Nucleic Acids Res. 21: 5583–5588

    Google Scholar 

  18. McBride O, Rajagppalan M & Hatfield D (1987) J. Biol. Chem. 262: 11163–11166

    Google Scholar 

  19. Chambers I, Frampton J, Goldfarb P, Affala N, McBain W & Harrison P (1986) EMBO J. 5: 1221–1227

    Google Scholar 

  20. Sunde RA & Evenson JK (1987) J. Biol. Chem. 262: 933–937

    Google Scholar 

  21. Mizutani T, Narihara T & Hashimoto A (1984) Eur. J. Biochem. 143: 9–13

    Google Scholar 

  22. Mizutani T, Kanaya K & Tanabe K (1999) BioFactors 9: 27–36

    Google Scholar 

  23. Yamada K, Mizutani T, Ejiri S & Totsuka T (1994) FEBS Lett. 347: 137–142

    Google Scholar 

  24. Mizutani T, Tanabe K & Yamada K (1998) FEBS Lett. 429: 189–193

    Google Scholar 

  25. Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P & Krol A (2000) EMBO J. 19: 4796–4805

    Google Scholar 

  26. Ding F & Grabowski P (1999) RNA 5: 1561–1569

    Google Scholar 

  27. Gelpi C, Sontheimer EJ & Rodriguez-Sanchez JL (2000) Clin. Exp. Immunol. 121: 364–374

    Google Scholar 

  28. Berry MJ, Banu L, Chen Y, Mandel SJ, Kieffer JD, Harney JW & Larsen PR (1991) Nature 353: 273–276

    Google Scholar 

  29. Copeland P, Fletcher J, Carlson B, Hatfield D & Driscoll (2000) EMBO J. 19: 306–314

    Google Scholar 

  30. Atkins J & Gesteland R (2000) Nature 407: 463–464

    Google Scholar 

  31. Goto C, Osaka T & Mizutani T (2001) BioFactors 14: 25–35

    Google Scholar 

  32. Mizutani T & Fujiwara T (2000) Mol. Biol. Reports 27: 99–105

    Google Scholar 

  33. Korotkov KV, Kumaraswamy E, Zhou Y, Hatfield DL & Gladyshev VN (2001) J. Biol. Chem. 276: 15330–15336

    Google Scholar 

  34. Sturchler-Pierrat C, Hubert N, Totsuka T, Mizutani T, Carbon P & Krol A (1995) J. Biol. Chem. 270: 18570–18574

    Google Scholar 

  35. Amberg R & Mizutani T, Wu X & Gross HJ (1996) J. Mol. Biol. 263: 8–19

    Google Scholar 

  36. Sturchler C, Westhof E, Carbon P & Krol A (1993) Nucleic Acids Res. 21: 1073–1079

    Google Scholar 

  37. Bock A, Forchhammer K, Heider J & Baron C (1991) Trends Biochem. Sci. 16: 463–467

    Google Scholar 

  38. Mizutani T & Goto C (2000) FEBS Lett. 466: 359–362

    Google Scholar 

  39. Hubert N, Sturchler C, Westohof E, Carbon P & Krol A (1998) RNA 4: 1029–1033

    Google Scholar 

  40. Breitschopf K & Gross HJ (1994) EMBO J. 13: 3166–3169

    Google Scholar 

  41. Mizutani T, Kanaya K, Ikeda S, Fujiwara T, Yamada K & Totsuka T (1998) Mol. Biol. Reports 25: 211–216

    Google Scholar 

  42. Takemura S, Mizutani T & Miyazaki M (1968) J. Biochem. 64: 827–837

    Google Scholar 

  43. Gillam I, Millward S, Blew D, van Tigerstrom M, Wimmer E & Tener GM (1967) Biochemistry 6: 3043–3056

    Google Scholar 

  44. Kato N, Hoshino H & Harada F (1983) Biochem. Int. 7: 635–645

    Google Scholar 

  45. Mizutani T, Goto C & Totsuka T (2000) J. Health Sci. 46: 399–404

    Google Scholar 

  46. Jakubowski H (1997) Biochemistry 36: 11077–11085

    Google Scholar 

  47. Daimond AM, Montero-Puerner Y, Lee BJ & Hatfield D (1990) Nucleic Acids Res. 18: 6727

    Google Scholar 

  48. Low S, Harney W & Berry M (1995) J. Biol. Chem. 270: 21059–21664

    Google Scholar 

  49. Lee BJ, Rajagopalan M, Kim YS, You KH, Jacobson KB & Hatfield D (1990) Mol. Cell. Biol. 10: 1940–1949

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizutani, T., Osaka, T., Ito, Y. et al. pGp as the main product of bovine tRNA kinase. Mol Biol Rep 29, 293–300 (2002). https://doi.org/10.1023/A:1020423705963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020423705963

Navigation