Skip to main content
Log in

Structure of the β-Cyclodextrin·p-Hydroxybenzaldehyde Inclusion Complex in Aqueous Solution and in the Crystalline State

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

β-Cyclodextrin (β-CD) and p-hydroxybenzaldehyde (p-HB) were studied by 1H-NMR in deuterated aqueous solution and the stoichiometry of the resulting complex (1:1) was determined by the continuous variation method. Inclusion of p-HB in β-CD was confirmed by the observation of NMR shifts for the inside H5 protons of the β-CD cavity. In the solid state X-ray analysis was carried out and revealed the detailed structure of the inclusion complex. Two β-CDs cocrystallize with four p-HB and 9.45 water molecules[2(C6H10O5)4C7H6O9.45H2O] in the triclinic space group P1 with unit cell parameters: a = 15.262(2), b = 15.728(1), c = 16.350(1) Å, α = 92.67(1)°, β = 96.97(1)°, γ = 103.31(1)°. The anisotropic refinement of 1973 atomic parameters converged at an R-factor = 0.066 for 10157 data with Fo 2 > 2σ (Fo 2). The 2:4 stoichiometry for the β-CD inclusion complex with p-HB in the crystalline state is different from that obtained in solution. β-CD forms dimers stabilized by direct O2(m)1O3(m)1·O2(n)2O3(n)2 hydrogen bonds (intradimer) and by indirect O6(m)1·O6(n)2 hydrogen bonds with one or two bridging water molecules joined in between (interdimer). These dimers are stacked like coins in a roll constructing infinite channels where the p-HB molecules are included. The p-HB molecules direct their polar CHO and OH groups into the nonpolar β-CD cavities and are hydrogen bonded to each other, yielding infinite, antiparallel chains. In addition, crystals of the complex were also investigated with thermogravimetry, vibrational spectroscopy (FTIR), and 13C CP-MAS NMR spectroscopy. The results obtained enabled us to structurally characterize the β-CD inclusion complex with p-HB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Saenger: Angew. Chem. Int. Ed. Engl. 19, 344 (1980).

    Google Scholar 

  2. J. Szejtli: Chem. Rev. 98, 1743 (1998).

    Google Scholar 

  3. For a recent review on applications of cyclodextrins, see J. Szejtli: Proceedings of the 10th International Symposium on Cyclodextrins, Kluwer Academic Publishers, Dordrecht (2000).

    Google Scholar 

  4. M.V. Rekharsky and Y. Inoue: Chem. Rev. 98, 1875 (1998).

    Google Scholar 

  5. K.-H. Frömming and J. Szejtli: Cyclodextrins in Pharmacy, Kluwer Academic Publishers, Dordrecht (1994), pp. 66.

    Google Scholar 

  6. For examples of inclusion complexes of β-CD and organometallic guests, see (a) S.S. Braga, I.S. Gonçalves, A.D. Lopes, M. Pillinger, J. Rocha, C.C. Romão, and J.J.C. Teixeira-Dias: J. Chem. Soc. Dalton Trans., 2964–2968 (2000); (b) I. Turel, A. Demšar, and J. Košmrlj: J. Incl. Phenom. Macrocycl. Chem. 35, 595 (1999).

  7. L. Szente, Comprehensive Supramolecular Chemistry, J.L. Atwood, J.E.D. Davies, D.D. MacNicol and F. Vögtle Exec. Ed., Vol 3, J. Szejtli and T. Osa (ed.), chap. 7.

  8. K. Harata: Chem. Rev. 98, 1883 (1998).

    Google Scholar 

  9. A. Moreira da Silva, A. Amado, P. Ribeiro-Claro, J. Empis, and J.J.C. Teixeira-Dias: J. Carbohydr. Chem. 14, 677 (1995).

    Google Scholar 

  10. P. Job: Ann. Chim. 9, 113 (1928).

    Google Scholar 

  11. G.M. Sheldrick: SHELXS97, Program for Crystal Structure Solution, University of Göttingen, Germany (1997).

    Google Scholar 

  12. G.M. Sheldrick: SHELXL97, Program for Crystal Structure Refinement, University of Göttingen, Germany (1997).

    Google Scholar 

  13. D.E. McRee: Practical Protein Crystallography, Academic Press, San Diego (1993).

    Google Scholar 

  14. J. Redondo, J. Frigola, A. Torrens, and P. Lupón: Mag. Reson. Chem. 33, 104 (1995).

    Google Scholar 

  15. A.S. Moreira, J. Empis, and J.J.C. Teixeira-Dias: J. Incl. Phenom. Macrocycl. Chem. 33, 81 (1999).

    Google Scholar 

  16. P. V. Demarco and A.L. Thakkar: J. Chem. Soc. Chem. Commun. 2 (1970).

  17. Y. Bahaddi, H. Galons, and N. Rysanek: Bull. Soc. Chim. Fr. 132, 330 (1995).

    Google Scholar 

  18. F. Djedaini, S.Z. Lin, B. Perly, and D. Wouessidjeswe: J. Pharm. Sci. 79, 643 (1987).

    Google Scholar 

  19. A. Ganza-Gonzalez, J.L. Vila-Jato, S. Anguiano-Igea, F.J. Otero-Espinar, and J. Blanco-Méndez: Int. J. Pharm. 106, 179 (1994).

    Google Scholar 

  20. H.-S. Choi, C. Chang, and A.M. Knevel: Pharm. Res. 9, 582 (1992)

    Google Scholar 

  21. M.J. Gidley and S.M. Bociek: J. Am. Chem. Soc. 110, 3820 (1988).

    Google Scholar 

  22. X.-T. Li, J.-H. Li, G.-E. Zhang, G.-X. Xi, and X.-D. Lou: Thermochim. Acta 262, 165 (1995).

    Google Scholar 

  23. D. Cremer and J.A. Pople: J. Am. Chem. Soc. 97, 1354 (1975).

    Google Scholar 

  24. IUPAC-IUB Joint Commision on Biochemical Nomenclature (JCBN) Symbols for specifying the conformation of polysaccharide chains, Recommendations 1981, Eur. J. Biochem. 131, 5 (1983).

    Google Scholar 

  25. F. Iwasaki: Acta Crystallogr. B33, 1646 (1977).

    Google Scholar 

  26. W. Saenger: Isr. J. Chem. 25, 43 (1985).

    Google Scholar 

  27. K. Harata: Crystallographic Studies (Comprehensive Supramolecular Chemistry, Vol. 3, J. Szejtli and T. Osa (eds.)), Pergamon, Oxford (1996), pp. 279.

    Google Scholar 

  28. R. Tokuoka, T. Fujiwara, and K.-I. Tomita: Acta Crystallogr. B37, 1158 (1981).

    Google Scholar 

  29. A. Rontoyianni, I.M. Mavridis, E. Hadjoudis, and A.J.M. Duisenberg: Carbohydr. Res. 252, 19 (1994).

    Google Scholar 

  30. D. Mentzafos, I.M. Mavridis, G. le Bas, and G. Tsoucaris: Acta Crystallogr. B47, 746 (1991).

    Google Scholar 

  31. (a) F.H. Herbstein and R.E. Marsh:Acta Crystallogr. B54, 677 (1998); (b) I.M. Mavridis and E. Hadjoudis: Carbohydr. Res. 229, 1 (1992).

    Google Scholar 

  32. M.R. Caira and D.R. Dodds: J. Incl. Phenom. Macrocycl. Chem. 34, 19 (1999).

    Google Scholar 

  33. J.J. Stezowski, K.H. Jogun, E. Eckle, and K. Bartels: Nature 274, 617 (1978). 125

    Google Scholar 

  34. M.N. Burnett and C.K. Johnson: ORTEPIII, Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge Natl. Lab., USA (1996).

    Google Scholar 

  35. P.J. Kraulis: J. Appl. Crystallogr. 24, 946 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braga, S.S., Aree, T., Imamura, K. et al. Structure of the β-Cyclodextrin·p-Hydroxybenzaldehyde Inclusion Complex in Aqueous Solution and in the Crystalline State. Journal of Inclusion Phenomena 43, 115–125 (2002). https://doi.org/10.1023/A:1020412412907

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020412412907

Navigation