Skip to main content
Log in

Pharmaceutical Properties of Loracarbef: The Remarkable Solution Stability of an Oral 1-Carba-l-dethiacephalosporin Antibiotic

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Loracarbef is an oral 1-carba-l-dethiacephalosporin antibiotic structurally related to cefaclor. Like many β-lactam antibiotics, loracar-bef exists in several hydrated crystalline forms. The pH–solubility profile curve for loracarbef monohydrate is U-shaped, resembling those for other zwitterionic cephalosporins. Loracarbef was found to be much more stable in solution than cefaclor. For example, in pH 7.4 phosphate buffer, loracarbef was unexpectedly found to be 130–150 times more stable than cefaclor and 10–12 times more stable than cephalexin, depending on the phosphate concentration. The pH-stability profile is U-shaped, similar to that of other zwitterionic cephalosporins, and shows maximum stability at the isoelectric point. At any given pH, loracarbef is more stable in solution than any other therapeutically useful cephalosporin. Acetate, borate, citrate, and especially phosphate buffers have catalytic effects on the rate of loracarbef hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. R. N. Guthikonda, L. D. Cama, and B. G. Christensen. Total synthesis of β-lactam antibiotics. VIII. Stereospecific total synthesis of (±)-l-carba-cephalothin. J. Am. Chem. Soc. 96:7584–7585 (1974).

    Google Scholar 

  2. T. Ogasa, H. Saito, Y. Hashimoto, K. Sato, and T. Hirata. Synthesis and biological evaluation of optically active 3-H-l-carbacephem compounds. Chem. Pharm. Bull. 37:315–321 (1989), and references therein.

    Google Scholar 

  3. I. Matsukuma, S. Yoshiiye, K. Mochida, Y. Hashimoto, K. Sato, R. Okachi, and T. Hirata. Synthesis and biological evaluation of 3-chloro-l-carbacephem compounds. Chem. Pharm. Bull. 37:1239–1244 (1989).

    Google Scholar 

  4. L. C. Blaszczak, R. F. Brown, G. K. Cook, W. J. Hornback, J. M. Indelicato, C. L. Jordan, A. S. Katner, M. D. Kinnick, J. H. McDonald III, J. M. Morin, J. E. Munroe, and C. E. Pasini. Comparative reactivity of 1-carba-1-dethiacephalosporins with cephalosporins. J. Med. Chem. 33:1656–1662 (1990).

    Google Scholar 

  5. J. H. Jorgensen, J. S. Redding, and L. A. Mahaer. Influence of storage and susceptibility test conditions on stability and activity of LY163892 and four other cephalosporins. Antimicrob. Agents Chemother. 32:1477–1480 (1988). (Compound LY163892 is loracarbef, 1.)

    Google Scholar 

  6. R. N. Jones and A. L. Barry. Beta-lactamase hydrolysis and inhibition studies of the new 1-carbacephem LY163892. Eur. J. Microbiol. 6:570–571 (1987).

    Google Scholar 

  7. H. Kusmiesz, S. Shelton, O. Brown, S. Manning, and J. D. Nelson. Loracarbef concentrations in middle ear fluid. Antimicrob. Agents Chemother. 34:2030–2031 (1990).

    Google Scholar 

  8. H. Bundgaard. Hydrolysis and intramolecular aminolysis of cephalexin and cephaloglycin in aqueous solution. Arch. Pharm. Chem. Sci. Ed. 4:25–43 (1976).

    Google Scholar 

  9. K. W. B. Austin, A. C. Marshall, and H. Smith. Crystalline modifications of ampicillin. Nature 208:999–1000 (1965).

    Google Scholar 

  10. R. R. Pfeiffer, K. S. Yang, and M. A. Tucker. Crystal pseudopolymorphism of cephaloglycin and cephalexin. J. Pharm. Sci. 59:1809–1814 (1970).

    Google Scholar 

  11. E. Van Heyningen. U.S. Patent 3,531,481 (1972).

  12. R. R. Pfeiffer and K. S. Yang. U.S. Patent 3,655,656 (1970).

    Google Scholar 

  13. D. Bouzard, A. Weber, and J. Sterner. U.S. Patent 4,504,657 (1985).

  14. C. E. Pasini. Eur. Pat. Appl. EP 0 311 366 Al (1989).

  15. T. M. Eckrich and C. E. Pasini. Eur. Pat. Appl. EP 0 369 686 A (1990).

  16. A. T. Tsuji, E. Nakashima, and K. Nishide. Physicochemical properties of amphoteric β-lactam antibiotics. III. Stability, solubility, and dissolution behavior of cefatrizine and cefadroxil as a function of pH. Chem. Pharm. Bull. 31:4057–4069 (1983).

    Google Scholar 

  17. J. M. Indelicato and C. E. Pasini. The acylating potential of γ-lactam antibacterials: Base hydrolysis of bicyclic pyrazolidinones. J. Med. Chem. 31:1227–1230 (1988).

    Google Scholar 

  18. M. Narisaka, J. Nishikawa, F. Watanabe, and Y. Terui. Synthesis and 3′-substituent effects of some 7α-methoxy-l-oxacephems on antibacterial activity and alkaline hydrolysis rates. J. Med. Chem. 30:514–522 (1987).

    Google Scholar 

  19. J. Nishikawa and K. Tori. 3-Substituent effect and 3-methylene substituent effect on the structure-reactivity relationship of 7β-(acylamino)-3-cephem-4-carboxylic acid derivatives studied by carbon-13 and IR spectroscopies. J. Med. Chem. 27:1657–1663 (1984).

    Google Scholar 

  20. D. B. Boyd. Substituent effects in cephalosporins as assessed by molecular orbital calculations, nuclear magnetic resonance, and kinetics. J. Med. Chem. 26:1010–1013 (1983).

    Google Scholar 

  21. A. Schanck, B. Coene, J. M. Dereppe, and M. Van Meerssche. Substituent effect on chemical reactivity of cephalosporins studied by kinetic and 13C NMR. Bull. Soc. Chem. Belg. 92:81–82 (1983).

    Google Scholar 

  22. J. M. Indelicato, A. Dinner, L. R. Peters, and W. L. Wilham. Hydrolysis of 3-chloro-3-cephems. Intramolecular nucleophilic attack in cefaclor. J. Med. Chem. 20:961–963 (1977).

    Google Scholar 

  23. M. Narisada, T. Yoshida, M. Ohtani, K. Ezumi, and M. Takasuka. Synthesis and substituent effects on antibacterial activity, alkaline hydrolysis rates, and infrared absorption frequencies of some cephem analogues related to latamoxef (moxalactam). J. Med. Chem. 26:1577–1579 (1983).

    Google Scholar 

  24. Y. Namiki, T. Tanabe, T. Kobayashi, J. Tanabe, Y. Okimura, S. Koda, and Y. Morimoto. Degradation kinetics and mechanisms of a new cephalosporin, cefixime, in aqueous solution. J. Pharm. Sci. 76:208–214 (1987).

    Google Scholar 

  25. J. M. Indelicato, J. W. Fisher, and C. E. Pasini. Intramolecular nucleophilic amino attack in a monobactam: Synthesis and stability of (2S,3S)-3-[(2R)-2-amino-2-phenylacetamido]-2-methyl-4-oxo-l-azetidinesulfonic acid. J. Pharm. Sci. 75:304–306 (1986).

    Google Scholar 

  26. S. M. Berge, N. L. Henderson, and M. J. Frank. Kinetics and mechanism of degradation of cefotaxime sodium in aqueous solution. J. Pharm. Sci. 72:59–63 (1983).

    Google Scholar 

  27. A. Tsuji, E. Nakashima, Y. Deguchi, K. Nishide, T. Shimizu, S. Horiuchi, K. Ishikawa, and T. Yamana. Degradation kinetics and mechanism of aminocephalosporins in aqueous solution: Cefadroxil. J. Pharm. Sci. 70:1120–1128 (1981).

    Google Scholar 

  28. E. S. Rattie, J. J. Zimmerman, and L. J. Ravin. Degradation kinetics of a new cephalosporin derivative in aqueous solution. J. Pharm. Sci. 68:1369–1374 (1979).

    Google Scholar 

  29. T. Yamana and A. Tsuji. Comparative stability of cephalosporins in aqueous solution: Kinetics and mechanisms of degradation. J. Pharm. Sci. 65:1563 (1976).

    Google Scholar 

  30. J. M. Indelicato, T. T. Norvilas, R. R. Pfeiffer, W. J. Wheeler, and W. L. Wilham. Substituent effects upon the base hydrolysis of penicillins and cephalosporins. Competitive intramolecular nucleophilic amino attack in cephalosporins. J. Med. Chem. 17:523–527 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasini, C.E., Indelicato, J.M. Pharmaceutical Properties of Loracarbef: The Remarkable Solution Stability of an Oral 1-Carba-l-dethiacephalosporin Antibiotic. Pharm Res 9, 250–254 (1992). https://doi.org/10.1023/A:1018949709797

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018949709797

Navigation