Skip to main content
Log in

Application of multiple-quantum line narrowing with simultaneous 1H and 13C constant-time scalar-coupling evolution in PFG-HACANH and PFG-HACA(CO)NH triple-resonance experiments

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Many triple-resonance experiments make use of one-bond heteronuclear scalar couplings toestablish connectivities among backbone and/or side-chain nuclei. In medium-sized(15–30 kDa) proteins, short transverse relaxation times of Cα single-quantum stateslimit signal-to-noise (S/N) ratios. These relaxation properties can be improved usingheteronuclear multiple-quantum coherences (HMQCs) instead of heteronuclear single-quantumcoherences (HSQCs) in the pulse sequence design. In slowly tumbling macromolecules, theseHMQCs can exhibit significantly better transverse relaxation properties than HSQCs.However, HMQC-type experiments also exhibit resonance splittings due to multiple two- andthree-bond homo- and heteronuclear scalar couplings. We describe here a family of pulsed-field gradient (PFG) HMQC-type triple-resonance experiments using simultaneous 1H and13C constant-time (CT) periods to eliminate the t1 dependence of these scalar couplingeffects. These simultaneous CT PFG-(HA)CANH and PFG-(HA)CA(CO)NH HMQC-typeexperiments exhibit sharper resonance line widths and often have better S/N ratios than thecorresponding HSQC-type experiments. Results on proteins ranging in size from 6 to 30 kDashow average methine CαH HMQC:HSQC enhancement factors of 1.10 ± 0.15, withabout 40% of the cross peaks exhibiting better S/N ratios in the simultaneous CT-HMQCversions compared with the HSQC versions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bax, A. and Grzesiek, S. (1993) Acc. Chem. Res., 26, 131–138.

    Google Scholar 

  • Billeter, M., Neri, D., Otting, G., Qian, Y.Q. and Wüthrich, K. (1992) J. Biomol. NMR, 2, 257–274.

    Google Scholar 

  • Boucher, W., Laue, E.D., Campbell-Burk, S. and Domaille, P.J. (1992a) J. Am. Chem. Soc., 114, 2262–2264.

    Google Scholar 

  • Boucher, W., Laue, E.D., Campbell-Burk, S.L. and Domaille, P.J. (1992b) J. Biomol. NMR, 2, 631–637.

    Google Scholar 

  • Clowes, R.T., Boucher, W., Hardman, C.H., Domaille, P.J. and Laue, E.D. (1993) J. Biomol. NMR, 3, 349–354.

    Google Scholar 

  • Clubb, R.T. and Wagner, G. (1992) J. Biomol. NMR, 2, 389–394.

    Google Scholar 

  • Clubb, R.T., Thanabal, V. and Wagner, G. (1992a) J. Magn. Reson., {vn97}, 213–217.

    Google Scholar 

  • Clubb, R.T., Thanabal, V. and Wagner, G. (1992b) J. Biomol. NMR, {vn2}, 203–210.

    Google Scholar 

  • Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987) Principles of NMR in One and Two Dimensions, Clarendon Press, Oxford, U.K.

    Google Scholar 

  • Farmer II, B.T. and Venters, R.A. (1995) J. Am. Chem. Soc., 117, 4187–4188.

    Google Scholar 

  • Feng, W., Rios, C.B. and Montelione, G.T. (1996) J. Biomol. NMR, {vn8}, 98–104.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992a) J. Am. Chem. Soc., 114, 6291–6293.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992b) J. Magn. Reson., 99, 201–207.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 185–204.

    Google Scholar 

  • Grzesiek, S., Anglister, J. and Bax, A. (1993a) J. Magn. Reson., B101, 114–119.

    Google Scholar 

  • Grzesiek, S., Anglister, J., Ren, H. and Bax, A. (1993b) J. Am. Chem. Soc., 115, 4369–4370.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1995) J. Biomol. NMR, 6, 335–339.

    Google Scholar 

  • Grzesiek, S., Kuboniwa, H., Hinck, A.P. and Bax, A. (1995) J. Am. Chem. Soc., 117, 5312–5315.

    Google Scholar 

  • Ikura, M., Kay, L.E. and Bax, A. (1990) Biochemistry, 29, 4659–4667.

    Google Scholar 

  • Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990) J. Magn. Reson., 89, 496–514.

    Google Scholar 

  • Kay, L.E., Ikura, M. and Bax, A. (1991) J. Magn. Reson., 91, 84–92.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.

    Google Scholar 

  • Kuboniwa, H., Grzesiek, S., Delaglio, F. and Bax, A. (1994) J. Biomol. NMR, 4, 871–878.

    Google Scholar 

  • Logan, T.M., Olejniczak, E.T., Xu, R.X. and Fesik, S.W. (1992) FEBS Lett., 314, 413–418.

    Google Scholar 

  • Lyons, B.A. and Montelione, G.T. (1993) J. Magn. Reson., B101, 206–209.

    Google Scholar 

  • Lyons, B.A., Tashiro, M., Cedergren, L., Nilsson, B. and Montelione, G.T. (1993) Biochemistry, 32, 7839–7845.

    Google Scholar 

  • Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson., 84, 393–399.

    Google Scholar 

  • Montelione, G.T. and Wagner, G. (1989) J. Am. Chem. Soc., 111, 5474–5475.

    Google Scholar 

  • Montelione, G.T. and Wagner, G. (1990) J. Magn. Reson., 87, 183–188.

    Google Scholar 

  • Montelione, G.T., Lyons, B.A., Emerson, S.D. and Tashiro, M. (1992) J. Am. Chem. Soc., 114, 10974–10975.

    Google Scholar 

  • Norwood, T.J. (1992) Prog. NMR Spectrosc., 24, 295–375.

    Google Scholar 

  • Olejniczak, E.T., Xu, R.X., Petros, A.M. and Fesik, S.W. (1992) J. Magn. Reson., 100, 444–450.

    Google Scholar 

  • Qian, X.-Y., Chien, C.-Y., Lu, Y., Montelione, G.T. and Krug, R.M. (1995) RNA, 1, 948–956.

    Google Scholar 

  • Seip, S., Balbach, J. and Kessler, H. (1992) J. Magn. Reson., 100, 406–410.

    Google Scholar 

  • Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson., {vn64}, 547–552.

    Google Scholar 

  • Wittekind, M. and Mueller, L. (1993) J. Magn. Reson., B101, 201–205.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY, U.S.A.

    Google Scholar 

  • Yamazaki, T., Lee, W., Revington, M., Mattiello, D.L., Dahlquist, F.W., Arrowsmith, C.H. and Kay, L.E. (1994) J. Am. Chem. Soc., {vn116}, 6464–6465.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swapna, G., Rios, C.B., Shang, Z. et al. Application of multiple-quantum line narrowing with simultaneous 1H and 13C constant-time scalar-coupling evolution in PFG-HACANH and PFG-HACA(CO)NH triple-resonance experiments. J Biomol NMR 9, 105–111 (1997). https://doi.org/10.1023/A:1018683920602

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018683920602

Navigation