Skip to main content
Log in

Treatments to induce the nucleation and growth of apatite-like layers on polymeric surfaces and foams

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this work, a bioactive glass is used as a percusor of calcium-phosphate (Ca-P) film deposition onto several polymer-based materials. Both bioinert (high molecular weight polyethylene, HMWPE), and biodegradable (corn starch-based blends, SEVA-C) polymers, unreinforced or reinforced with hydroxylapatite (HA), were coated by the very simple proposed route. Also polyurethane (PU) foams, with an open-cell structure, were mineralized by the proposed method. In fact, it was possible to induce the growth of the Ca-P films not only at the surface, but also in the bulk of the PU foam. These cellular materials are intended for cancellous bone replacement applications. The morphology of the formed films was strongly dependent on the used substrate, its polar character, and on the presence of HA in its composition, as observed by SEM. Nevertheless, a well defined needly like structure was observed in all samples at high magnifications. The Ca:P ratios of the films were between 1.5 and 1.7, i.e. in the range of tricalcium phosphate-hydroxylapatite. Raman spectroscopy and thin-film x-ray diffraction (XRD) evidenced the formation of mostly amorphous calcium-phosphate films. After scraping the coating from the polymer surface and heat-treating the resulting powder at 1000°C for 1 h, HA and β-tricalcium phosphate (TCP) typical peaks were found on XRD patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. LOWENSTAM and S. WEINER (eds) “On Biomineralization” (Oxford University Press, Oxford, 1989).

    Google Scholar 

  2. S. MANN, Nature 332 (1988) 119.

    Google Scholar 

  3. Idem, Endeavour 15 (1991) 120.

    Google Scholar 

  4. Idem, Nature 365 (1993) 499.

    Google Scholar 

  5. A. H. HEUR, D. J. FINK, V. J. LARAIA, P. D. CALVERT, K. KENDALL, G. L. MESSING, J. BLACKWELL, P. C. RIEKE, D. H. THOMPSON, A. P. WHEELER, A. VEIS and A. I. CAPLAN, Science 255 (1992) 1098.

    Google Scholar 

  6. L. L HENCH, J. Amer. Ceram. Soc. 74 (1991) 1487.

    Google Scholar 

  7. R. Z. LEGEROS, I. ORLY, M. GREGOIRE and G. DACULSI, in “The Bone-Biomaterial Interface”, edited by J. E. Davies (University of Toronto Press, Torento, 1991) p. 76.

    Google Scholar 

  8. L. L. HENCH, Chem. & Indust. 17 (1995) 547.

    Google Scholar 

  9. S. HAYAKAWA, S. TSURU, H. IIDA, C. OHTSUKI and A. OSAKA, Phys. Chem. Glasses 37 (1996) 188.

    Google Scholar 

  10. P. LI, X. YE, I. KANGASNIEMI, J. M. A. DE BLIECKHOGERVORST, C. P. A. T. KLEIN and K. DE GROOT, J. Biomed. Mater. Res. 29 (1995) 325.

    Google Scholar 

  11. P. LI, C. OTHSUKI, T. KOKUBO, K. NAKANISH, N. SOGA, T. NAKAMURA and T. YAMAMURO, J. Amer. Ceram. Soc. 75 (1992) 2094.

    Google Scholar 

  12. S. B. CHO, K. NAKANISHI, T. KOKUBO, N. SAGA, C. OHTSUKI and T. NAKAMURA, J. Biomed. Mater. Res. 33 (1996) 145.

    Google Scholar 

  13. A. M. RADDER, H. LEENDERS and C. A. VAN BLITTERSWIJK, ibid. 28 (1994) 141.

    Google Scholar 

  14. R. L. REIS and A. M. CUNHA, J. Mater. Sci. Mater. Med. 6 (1995) 786.

    Google Scholar 

  15. R. L. REIS, A. M. CUNHA, P. S. ALLAN and M. J. BEVIS, J. Polym. Adv. Technol. 7 (1996) 784.

    Google Scholar 

  16. Idem, Adv. Polym. Technol. (1997) in press.

  17. R. L. REIS, S. C. MENDES, A. M. CUNHA and M. J. BEVIS, Polym. Int. 43 (1997) 347.

    Google Scholar 

  18. W. BONFIELD, M. D. GRYNPAS, A. E. TULLY, J. BOWMAN and J. ABRAM, Biomaterials 2 (1981) 185.

    Google Scholar 

  19. M. WANG, D. PORTER and W. BONFIELD, Br. Ceram. Trans. 93 (1994) 104.

    Google Scholar 

  20. A. A. CAMPBELL, G. E. FRYXELL, J. C. LINEHAN and G. L. GRAFF, J. Biomed. Mater. Res. 32 (1996) 111.

    Google Scholar 

  21. M. TANAHASHI, T. YAO, T. KOKUBO, M. MINODA, T. MIYAMOTO, T. NAKAMURA and T. YAMAMURO, J. Amer. Ceram. Soc. 77 (1994) 2805.

    Google Scholar 

  22. K. HATA, T. KOKUBO, T. NAKAMURA and T. YAMAMURO, ibid. 78 (1995) 1049.

    Google Scholar 

  23. T. KOKUBO, K. HATA, T. NAKAMURA and T. YAMAMURO, in “Bioceramics”, Vol. 4, edited by W. Bonfied, G. W. Hastings and K. E. Tanner (Butterworth-Heineman, London 1991) p. 113.

    Google Scholar 

  24. M. TANAHASHI, T. YAO, T. KOKUBO, M. MINODA, T. MIYAMOTO, T. NAKAMURA and T. YAMAMURO, J. Mat. Sci. Mater. Med. 6 (1995) 319.

    Google Scholar 

  25. Idem, J. Biomed. Mater. Res. 29 (1995) 349.

    Google Scholar 

  26. S. H. LI, Q. LIU, J. R. WIJN, B. L. ZHOU and K. DE GROOT, Biomaterials 18 (1997) 389.

    Google Scholar 

  27. S. H. LI, Q. LIU, J. R. WIJN, K. DE GROOT and B. L. ZHOU, J. Mater. Sci. Lett. 15 (1996) 1882.

    Google Scholar 

  28. G. GOLOMB, A. BARASHI, D. WAGNER and O. NACHMIAS, Clin. Mater. 13 (1993) 61.

    Google Scholar 

  29. J. M. OLIVEIRA, M. H. FERNANDES, R. N. CORREIA, in “Bioceramics” Vol. 5, edited by T. Yamamuro, T. Kokubu, T. Nakamura and Kobunshi, (Konkokai, Tokyo, 1992) p. 7.

    Google Scholar 

  30. J. M. OLIVEIRA, R. N. CORREIA and M. H. FERNANDES, Biomaterials 16 (1995) 849.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

REIS, R.L., CUNHA, A.M., FERNANDES, M.H. et al. Treatments to induce the nucleation and growth of apatite-like layers on polymeric surfaces and foams. Journal of Materials Science: Materials in Medicine 8, 897–905 (1997). https://doi.org/10.1023/A:1018514107669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018514107669

Keywords

Navigation