Skip to main content
Log in

Genetic and molecular investigations on the endogenous mobile elements of non-drosophilid fruitflies

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

A syndrome of abnormal genetic effects, resembling Drosophila hybrid dysgenesis, occurs in Ceratitis capitata when strains of different origin are mated. The pattern of abnormal traits observed appears to be the phenotypic expression of a complex interacting dysgenic system of inducer and suppressor effects; probably more than one system is activated in the crosses. This suggests that different systems of mobile elements occur in different strains and populations of C. capitata. Using a PCR primer specific to the ITR sequence of a deleted element, full length mariner elements were isolated from C. capitata, Ceratitis rosa, and Trirhithrum coffeae. Very high similarities were found in inter- and intraspecific comparisons of the elements. The majority of these elements contained deletions and frame-shifts. However, one clone Ccmar1.18, from C. capitata, was found to possess an uninterrupted ORF coding for 338 amino acids with ∼60% similarity to the Mos1 element of Drosophila mauritiana. Database searches and phylogenetic analyses showed that the mariner elements isolated in the present study are representatives of Robertson's mellifera mariner subfamily. The copy numbers of the elements within each species are very different, ranging from about 10 in T. coffeae to 5000 in C. rosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baruffi, L., G. Damiani, C.R. Guglielmino, C. Bandi, A.R. Malacrida & G. Gasperi, 1995. Polymorphism within and between populations of Ceratitis capitata: comparison between RAPD and multilocus enzyme electrophoresis data. Heredity 74: 425–437.

    PubMed  CAS  Google Scholar 

  • Bazin, C. & D. Higuet, 1996. Lack of correlation between dysgenic traits in the hobo system of hybrid dysgenesis in Drosophila melanogaster. Genet. Res. 67: 219–226.

    Article  PubMed  CAS  Google Scholar 

  • Bedo, D.G., 1986. Polytene and mitotic chromosome analysis in Ceratitis capitata (Diptera: Tephritidae). Can. J. Genet. Cytol. 28: 180–188.

    Google Scholar 

  • Bedo, D.G., 1987. Polytene chromosome mapping in Ceratitis cap-itata (Diptera: Tephritidae). Genome 29: 598–611.

    Google Scholar 

  • Brogna, S., K. Bourtzis, A. Babaratsas, A. Zacharopoulou & C. Savakis,1994. The Adh locus of Ceratitis capitata. Fourth International Symposium on Fruit Flies of Economic Importance, Sand Key, Florida, U.S.A.

  • Bucheton A., J.M. Lavige, G. Picard & P. L'Heritier, 1976. Non-Mendelian female sterility in Drosophila melanogaster: quantitative variations in the efficiency of inducer and reactive strains. Heredity 36: 305–314.

    PubMed  CAS  Google Scholar 

  • David, J.R. & P. Capy, 1988. Genetic variation of Drosophila melanogaster natural populations. Trends Genet 4: 106–111.

    Article  PubMed  CAS  Google Scholar 

  • Doak, T.G., F.P. Doerder, C.L. Jahn & G. Herrick, 1994. A pro-posed superfamily of transposase-related genes: new members in transposase-like elements of ciliated protozoa and a common ‘D35E’ motif. Proc. Natl. Acad. Sci. USA 91: 942–946.

    Article  PubMed  CAS  Google Scholar 

  • Engels, W.R., 1979. Hybrid dysgenesis in Drosophila melanogaster: rules of inheritance of female sterility. Genet. Res. 33: 219–236.

    Google Scholar 

  • Engels, W.R., 1984. A transacting product needed for P factor transposition in Drosophila. Science 226: 1194–1196.

    PubMed  CAS  Google Scholar 

  • Engels, W.R., W.K. Benz, C.R. Preston, P.L. Graham, R.W. Phillis & H.M. Robertson, 1987. Somatic effects of P element activity in Drosophila melanogaster: Pupal lethality. Genetics 117: 745–757.

    PubMed  CAS  Google Scholar 

  • Fletcher, B.S., 1989. Life history strategies of tephritid fruit flies, pp. 195–208 in Fruit Flies. Their Biology, Natural Enemies and Control, vol. 3B, edited by A.S. Robinson & G. Hooper. Amsterdam: Elsevier.

    Google Scholar 

  • Franz, G. & C. Savakis, 1991. Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res. 19: 6646.

    PubMed  CAS  Google Scholar 

  • Gasperi, G., C.R. Guglielmino, A.R. Malacrida & R. Milani, 1991. Genetic variability and gene flow in geographic populations of Ceratitis capitata (Wied) (medfly). Heredity 64: 347–356.

    Google Scholar 

  • Gomulski, L.M., C. Torti, A.R. Malacrida & G. Gasperi, 1997. Ccmar1, a full length mariner element from the Mediterranean fruit fly, Ceratitis capitata. Insect Mol. Biol. 6: 241–253.

    Article  PubMed  CAS  Google Scholar 

  • Greathead, D.J., 1972. Notes on coffee fruit flies and their parasites at Kowanda (Uganda). Technical bulletin of the Commonwealth Institute of Biological Control 15: 11–18.

    Google Scholar 

  • Handler, A.M. & S.P. Gomez, 1996. The hobo transposable element excises and has related elements in Tephritid species. Genetics 143: 1339–1347.

    PubMed  CAS  Google Scholar 

  • Henderson, S.A., R.C. Woodruff & J.N. Thompson, Jr. 1978. Spontaneous chromosome breakage at male meiosis associated with male recombination in Drosophila melanogaster. Genetics 88: 93–107.

    PubMed  Google Scholar 

  • Joint FAO/IAEA Division, 1985. Report of consultants' meeting on 'The Application of Genetic Engineering and Recombinant DNA Technology in the Development of Genetic Sexing Mechanisms for the Mediterranean Fruit Fly, Ceratitis capitata (Wied.), Vien-na 4–6 December 1985, pp. 1–18. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Joint FAO/IAEA Division, 1990. Genetic Sexing of the Mediterranean Fruit Fly. Colymbary, Crete, 3–7 September, 1988 pp. 1–224. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Joint FAO/IAEA Division, 1994. Genetic Engineering Technology for the Improvement of the Sterile Insect Technique. Proceedings of the Final Research Coordination Meeting, Vienna, Austria, 21–25 November, 1994. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Kidwell, M.G. & Kidwell J.F., 1976. Selection for male recombination in Drosophila melanogaster. Genetics 84: 333–351.

    PubMed  CAS  Google Scholar 

  • Kidwell, M.G., J.F. Kidwell & J.A. Sved, 1977. Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86: 813–833.

    PubMed  Google Scholar 

  • Kidwell, M.G. & J.B. Novy, 1979. Hybrid dysgenesis in Drosophila melanogaster: Sterility resulting from gonadal dysgenesis in the P-M system. Genetics 92: 1127–1140.

    PubMed  Google Scholar 

  • Kidwell, M.G., 1989. Evolutionary aspects of hybrid dysgenesis in Drosophila. Can. J. Zool. 68: 1716–1726.

    Article  Google Scholar 

  • Kocur, G.J., E.A. Drier & M.J. Simmons, 1986. Sterility and hyper-mutability in the P-M system of hybrid dysgenesis in Drosophila melanogaster. Genetics 114: 1147–1163.

    PubMed  CAS  Google Scholar 

  • Lohe, A.R., E.N. Moriyama, D.A. Lidholm & D.L. Hartl, 1995. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol. Biol. Evol. 12: 62–72.

    PubMed  CAS  Google Scholar 

  • Lohe, A.R. & D.L. Hartl, 1996. Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol. Biol. Evol. 13: 549–555.

    PubMed  CAS  Google Scholar 

  • Loukeris, T.G., I. Livadaras, B. Arcà, S. Zabalou & C. Savakis, 1995. Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science 270: 2002–2005.

    PubMed  CAS  Google Scholar 

  • Louis, C. & G. Yannopoulos, 1988. The transposable elements involved in hybrid dysgenesis in Drosophila melanogaster, pp. 205–250 in Oxford Surveys on Eukaryotic Genes, Vol. 5, edited by N. McLean. Oxford: University Press.

    Google Scholar 

  • Malacrida, A.R., G. Gasperi & R. Milani, 1987. Genome orga-nization of Ceratitis capitata: linkage groups and evidence for sex ratio distorters, pp. 169–174 in Fruit Flies edited by A.P. Economopoulos. Amsterdam: Elsevier.

    Google Scholar 

  • Malacrida, A.R., G. Gasperi, L. Baruffi & R. Milani, 1990. The contribution of formal genetic studies to the characterization of the Mediterranean Fruit Fly, Ceratitis capitata, pp. 85–89 in Genetic Sexing of the Mediterranean Fruit Fly. Colymbari, Crete, 3–7 September 1988. Vienna, Austria: International Atomic Energy Agency.

    Google Scholar 

  • Malacrida, A.R., C.R. Guglielmino, G. Gasperi, L. Baruffi & R. Milani, 1992a. Spatial and temporal differentiation in colonizing populations of Ceratitis capitata. Heredity 69: 101–111.

    Google Scholar 

  • Malacrida, A.R., G. Gasperi, A. Zacharopoulou, C. Torti, E. Riva Francos & Milani R., 1992b. Evidence for a genetic duplica-tion involving alcohol dehydrogenase genes in Ceratitis capitata. Biochem. Genet. 30: 35–48.

    Article  PubMed  CAS  Google Scholar 

  • Malacrida, A. R., C. R. Guglielmino, P. D'Adamo, C. Torti, F. Marinoni & G. Gasperi, 1996a. Allozyme divergence and phylogenetic relationships among species of tephritid flies. Heredity 76: 592–602.

    CAS  Google Scholar 

  • Malacrida, A.R., C. Torti, S. Costa & G. Gasperi, 1996b. Genomic instability in the medfly, Ceratitis capitata: an effect of trans-posable element activity? Proceedings of the XX International Congress of Entomology, Florence August 25–31, 1996. pp. 244.

  • Malacrida, A.R., F. Marinoni, C. Torti, G. Gasperi & C.R. Guglielmino. Gene flow and colonization history of Ceratitis capitata (submitted).

  • O'Broctha, D.A. & A.M. Handler, 1988. Mobility of P elements in drosophilids and non-drosophilids. Proc. Natl. Acad. Sci. USA 85: 6052–6056.

    Article  Google Scholar 

  • O'Brochta, D.A. & P.W. Atkinson, 1996. Transposable elements and gene trasformation in non-drosophilid insects. Insect Biochem. Molec. Biol. 26: 739–753.

    Article  Google Scholar 

  • Powell, J.R., A. Caccone, J.M. Gleason & L. Nigro, 1993. Rates of DNA evolution in Drosophila depend on function and developmental stage of expression. Genetics 133: 291–298.

    PubMed  CAS  Google Scholar 

  • Raymond, J.D., T.A. Ojala, J. White & M.J. Simmons, 1991. Inheritance of P-element regulation in Drosophila melanogaster. Genet. Res. Camb. 57: 227–234.

    CAS  Google Scholar 

  • Robertson, H.M., 1995. The Tc1-mariner superfamily of trans-posons in Animals. J. Insect Physiol. 41: 99–105.

    Article  CAS  Google Scholar 

  • Robertson, H.M. & E.G. MacLeod, 1993. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruitfly, and related arthropods. Insect Mol. Biol. 2: 125–139.

    PubMed  CAS  Google Scholar 

  • Robertson, H.M., & D.J. Lampe, 1995a. Distribution of transposable elements in arthropods. Annu. Rev. Entomol. 40: 333–357.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M. & D.J. Lampe, 1995b. Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol. Biol. Evol. 12: 850–862.

    PubMed  CAS  Google Scholar 

  • Robertson, H.M. & M.L. Asplund, 1996. Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. Insect. Biochem. Molec. Biol. 26: 945–954.

    Article  CAS  Google Scholar 

  • Robinson, A.S., C. Savakis & C. Louis, 1988. The status of molecular genetic studies in the medfly Ceratitis capitata in relation to genetic sexing, pp. 241–250 in Modern Insect Control: Nuclear Technique and Biology. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Robinson, A.S. & G.H.S. Hooper, eds., 1989. Fruit Flies, Their Biology, Natural Enemies and Control, volumes 3A and 3B. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Rubin, G.M. & A.C. Spradling, 1983. Vectors for P element mediated gene transfer in Drosophila. Nucleic Acids Res. 11: 6341–6351.

    PubMed  CAS  Google Scholar 

  • Sved, J.A., 1979. The ‘hybrid dysgenesis’ syndrome in Drosophila melanogaster. BioScience 29: 659–664.

    Article  Google Scholar 

  • Torti, C., A.R. Malacrida, G. Yannopoulos, C. Louis, & G. Gasperi, 1994. Hybrid dysgenesis-like phenomena in the medfly, Ceratitis capitata (Diptera, Tephritidae). J. Hered. 85: 92–99.

    Google Scholar 

  • Torti, C., L.M. Gomulski, A.R. Malacrida, P. Capy & G. Gasperi, 1997. Characterisation and evolution of mariner elements from closely related species of fruit flies (Diptera: Tephritidae) J. Mol. Evol. (in press).

  • Werman, S.D., E.H. Davidson & R.L. Britten, 1990. Rapid evolution in a fraction of the Drosophila nuclear genome. J. Mol. Evol. 30: 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Yannopoulos, G., 1978a. Studies on the sterility induced by the male recombination factor 31.1MRF in Drosophila melanogaster. Genet. Res. Camb. 32: 239–247.

    CAS  Google Scholar 

  • Yannopoulos, G., 1978b. Studies on male recombination in a Southern Greek Drosophila melanogaster population: c) Chromosomal abnormalities at male meiosis, d) Cytoplasmic factors responsible for the reciprocal cross effect. Genet. Res. Camb. 31: 187–196.

    Google Scholar 

  • Yannopoulos, G. & M. Pelecanos, 1977. Studies on male recombination in a Southern Greek Drosophila melanogaster population: a) Effect of temperature; b) Suppression of male recombination in reciprocal crosses. Genet. Res. Camb. 29: 231–238.

    Google Scholar 

  • Yannopoulos, G., N. Stamatis & J.C.J. Eeken, 1986. Difference in the cytotype and hybrid dysgenesis inducing abilities of different P-strains of Drosophila melanogaster. Experientia 42: 1283–1285.

    Article  Google Scholar 

  • Zacharopoulou, A., 1987. Cytogenetic analysis of mitotic and salivary gland chromosomes in the medfly Ceratitis capitata. Genome 29: 67–71.

    Google Scholar 

  • Zacharopoulou, A., 1990. Polytene chromosome maps in the medfly Ceratitis capitata. Genome 33: 184–197.

    Google Scholar 

  • Zacharopoulou, A., M. Frisardi, C. Savakis, A.S. Robinson, P. Tolias, M. Konsolaki, K. Komitopoulou & F.C. Kafatos, 1992. The genome of the mediterranean fruitfly Ceratitis capitata: localization of molecular markers by in situ hybridization to salivary glands polytene chromosomes. Chromosoma 101: 448–455.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torti, C., Gomulski, L., Malacrida, A. et al. Genetic and molecular investigations on the endogenous mobile elements of non-drosophilid fruitflies. Genetica 100, 119–129 (1997). https://doi.org/10.1023/A:1018313108749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018313108749

Navigation