Skip to main content
Log in

Allozyme variation and divergence in the phyllotine rodent Calomys hummelincki (Husson, 1960)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The aim of the present study was to assess the degree of genetic variation and divergence among six populations of Calomys hummelincki, a phyllotine rodent distributed in northern South America. With this information we will try to evaluate the two hypotheses of possible colonization and differentiation of this group of rodents postulated by Baskin and Reig. We studied 34 loci by electrophoretic analysis: 21 were monomorphic for all populations and 13 were polymorphic in at least one population, being P 1% = 21.6% the mean value for all populations. The mean value of heterozygosity per locus was H = 0.075. Low values of genetic distance were observed among populations of the Llanos region (0.001 < D < 0.006). There was a larger genetic distance (D = 0.024) between the population from Isiro, in the northwestern semiarid region, and those from the Llanos region. The insular population of Aruba displayed the lowest value of genetic distance with the population from Isiro (D = 0.014). The specimens from Sipao, on the right side of the Orinoco river, displayed the highest values of genetic distances in comparison with other populations of C. hummelincki (0.070 < D < 0.095). The relatively high differentiation was due to the fixation of new alleles, not found in other populations of C. hummelincki, at loci Idh-1 and Est-2. F-statistics and Nm values indicated reduced gene flow among the populations sampled. Despite the limited data, the results seem to support Reig's hypothesis about south to north colonization of genus Calomys in South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apfelbaum, L.I. & O.A. Reig, 1989. Allozyme genetic distances and evolutionary relationships in species of akodontine rodents (Cricetidae: Sigmodontinae). Biol. J. Linn. Soc. 38: 257–287.

    Google Scholar 

  • Barton N.H. & M. Slatkin, 1986. A quasi equilibirium theory of the distribution of rare alleles in a subdivided population. Heredity 56: 409–415.

    PubMed  Google Scholar 

  • Baskin, J.A., 1978. Bensonomys, Calomys, and the origin of the Phyllotine group of Neotropical cricetine (Rodentia: Cricetidae). J. Mamm. 59: 125–135.

    Google Scholar 

  • Baskin, J.A., 1989. The initial origin and diversification of the Neotropical Sigmodontinae (Rodentia: Muridae)-A perspective from the north American fossil record pp: 263–264. Vol I Fifth International Theriological Congress, Rome, Italy.

    Google Scholar 

  • Bekker, J.P., 1996. Basisrapport zoogdierkundig onderzoek Aruba. Monography. Veere, Netherlands.

    Google Scholar 

  • Blanco, A. & C.N. Gardenal, 1977. Polimorfismo enzimático en poblaciones de roedores cricétidos. Medicina (B. Aires) 37: 141–148.

    Google Scholar 

  • Butterworth, B.B., 1960. The cricetid mouse, Calomys, from Venezuela. J. Mamm. 41: 517–518.

    Google Scholar 

  • Chiappero, M.B., G.E. Calderón & C. N. Gardenal, 1997. Olygoryzomys flavescens (Rodentia, Muridae): gene flow among populations from central-eastern Argentina. Genetica 101: 105–113.

    Article  PubMed  CAS  Google Scholar 

  • de Sousa, G.B., N. de Rosa & C.N. Gardenal, 1996. Protein polymorphism in Eligmodontia typus. Genetic divergence with other phyllotine cricetids. Genetica 97: 47–53.

    Article  CAS  Google Scholar 

  • Eisenberg, J.E., 1989. Mammals of the Neotropics. The Northern Neotropics, Vol 1: Panamá, Colombia, Venezuela, Guyana, Suriname and French Guiana. The University of Chicago Press, USA.

    Google Scholar 

  • Ewel, J.J. & A. Madríz, 1968. Zonas de vida de Venezuela. Ministerio de Agricultura y Cría. Caracas, Venezuela.

    Google Scholar 

  • Filippucci, M.G., E. Rodinò, E. Nevo & E. Capanna, 1988. Evolutionary genetics and systematics of the garden dormouse, Eliomys Wagner, 1840. 2.-Allozyme diversity and differentiation of chromosomal races. Boll. Zool. 55: 47–54.

    Google Scholar 

  • Filippucci, M.G., V. Fadda, B. Krystufek, S. Simson & G. Amori, 1991. Allozyme variation and differentiation in Chionomys nivalis (Martins, 1842). Acta Theriol. 36: 47–62.

    Google Scholar 

  • García, B.A., C.N. Gardenal & A. Blanco, 1990. Heterozygosity and gene flow in populations of Calomys laucha (Rodentia, Cricetidae). Hereditas 112: 179–186.

    PubMed  Google Scholar 

  • García, B.A., A. Martino, M.B. Chiappero & C.N. Gardenal, 1999. Allozyme variation and taxonomic status of Calomys hummelincki (Rodentia, Sigmodontinae). Z. Saugetierk. 64: 30–35.

    Google Scholar 

  • Gardenal, C.N., M.S. Sabattini & A. Blanco, 1980. Enzyme polymorphism in a population of Calomys musculinus (Rodentia, Cricetidae). Bioch. Gen. 18: 563–575.

    Article  CAS  Google Scholar 

  • Gardenal, C.N., M.S. Sabattini & A. Blanco, 1986. Geographic patterns of allele frequencies in Calomys musculinus reservoir-host of Junín virus. Medicina (B. Aires) 46: 73–78.

    CAS  Google Scholar 

  • Gardenal, C.N., B.A. García, M.S. Sabattini & A. Blanco, 1990. Protein polymorphism and genetic distance in South American cricetid rodents of genus Calomys. Genetica 80: 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Gorman, G.C. & J. Renzi Jr., 1979. Genetic distance and heterozygosity estimates in electrophoretic studies: effects of sample size. Copeia 1979: 242–249.

    Article  Google Scholar 

  • Harris, H. & Handbook of enzyme electrophoresis in human genetics. North Holland Publ. Co., Elsevier. New York, USA.

  • Hartl, D.L., 1988. A primer of population genetics. 2nd edn. Sinauer Associates, I., Suntherland: 1–305.

    Google Scholar 

  • Hershkovitz, P., 1962. Evolution of Neotropical Cricetine rodents (Muridae), with special reference to the Phyllotine group. Fieldiana: Zoology 46: 1–515.

    Google Scholar 

  • Horn, C., J. Guerrero, G.A. Sarmiento & M.A. Llorente, 1995. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23: 237–240.

    Article  Google Scholar 

  • Husson, A.M., 1960. A new species of the rodent Baiomys from Aruba and Curaçao. Studies on the fauna of Curaçao and other Caribbean islands 43: 33–40.

    Google Scholar 

  • Linares, O.J., 1998. Mamíferos de Venezuela. Sociedad Conservacionista Audubon. Caracas, Venezuela.

    Google Scholar 

  • Marshall, L.G., 1979. A model for paleogeography of South American cricetine rodents. Paleobiology 5: 126–132.

    Google Scholar 

  • Martino, A.M.G., 2000. Caratterizzazione biologica di Calomys hummelincki (Husson, 1960) (Rodentia, Sigmodontinae): genetica, crescita, morfometria ed ecologia. Ph.D. Dissertation. Università degli Studi ‘La Sapienza'. Rome, Italy.

    Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. Amer. Nat. 106: 283–292.

    Article  Google Scholar 

  • Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    Google Scholar 

  • Nevo, E., 1998. Molecular evolution and ecological stress at global, regional and local scales: The Israeli perspective. J. Exp. Zool. 282: 95–119.

    Article  CAS  Google Scholar 

  • Nevo, E., M.G. Filippucci & A. Beiles, 1997. Genetic diversity and its ecological correlates in nature: comparisons between subterranean, fossorial, and aboveground small mammals, pp 347–366. In Evolution of Subterranean Mammals at the Organismal and Molecular Levels, edited by E. Nevo, & O. A. Reig. Progress in Clinical and Biological Research, Vol. 335. Wiley, New York.USA.

    Google Scholar 

  • Nevo, E., M.G. Filippucci, T. Pavlicek, O. Gorlova, G. Shenbrot, E. Ivanitskaya & A. Beiles, 1998. Genotypic and phenotypic divergence of rodents (Acomys cahirinus and Apodemus mystacinus) at ‘Evolution Canyon’: micro-and macroscale parallelism. Acta Theriol. 43 (Suppl. 5): 9–34.

    Google Scholar 

  • Ochsenius, C., 1980. El Cuaternario en Venezuela. Introducción a la paleoecología en el norte de Sudamérica. Cuadernos Falconianos 3: 1–68.

    Google Scholar 

  • Patton, J.L., P. Myers & M.F. Smith, 1989. Electrophoretic variation in selected South American Akodontine rodents (Muridae: Sigmodontinae), with comments on systematic implications. Z. Saugetier 54: 347–359.

    Google Scholar 

  • Pérez-Zapata, A., A.D. Vitullo & O.A. Reig, 1987. Karyotypic and sperm distinction of Calomys hummelincki from Calomys laucha (Rodentia: Cricetidae). Acta Cient. Vzlana. 38: 90–93.

    Google Scholar 

  • Raymond, M. & F. Rousset, 1995. GENEPOP (Version 1.2): population genetics software for exact tests and ecumenecism. J. Heredity 86: 248–249.

    Google Scholar 

  • Reig, O.A., 1984. Distribução geográfica e historia evolutiva dos roedores muroideos sulamericanos (Cricetidae: Sigmodontinae). Rev. Bras. Genet. 7: 333–365.

    Google Scholar 

  • Sage, R.D., J.R. Contreras, V.G. Roig J. & L. Patton, 1986. Genetic variation in the South American burrowing rodents of the genus Ctenomys (Rodentia, Ctenomyidae). Z. Saugetierk. 51: 158–172.

    Google Scholar 

  • Sarich, V.M., 1977. Rates, sample sizes, and the neutrality hypothesis for electroforesis in evolutionary studies. Nature 265: 24–28.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, C., 1988. Climatic changes during the Last Glacial Maximum in northern South America and the Caribbean: A review. Interciencia 13(3): 128–137.

    Google Scholar 

  • Selander, R.K. & W.E. Johnson, 1973. Genetic variation among vertebrate species. Ann. Rev. Ecol. Syst. 4: 75–91.

    Article  Google Scholar 

  • Swofford, D.L. & S.H. Berlocher, 1987. Inferring evolutionary trees from gene frequency data under the principle of maximum parsimony. Syst. Zool. 36: 293–325.

    Article  Google Scholar 

  • Swofford, D.L. & R.B. Selander, 1981. BIOSYS-1: a FORTRAN program for comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 282–283.

    Google Scholar 

  • Theiler, G.R. & C.N. Gardenal, 1994. Patterns of evolution in Graomys griseoflavus (Rodentia, Cricetidae). I. Protein polymorphism in populations with different chromosome number. Hereditas 120: 225–229.

    Article  PubMed  CAS  Google Scholar 

  • Vuilleumier, B.S., 1973. Pleistocene changes in the fauna and flora of South America. Science 173: 771–780.

    Google Scholar 

  • Webb, S.D., 1978. A history of savanna vertebrates in the New World. Part II: South America and the Great Interchange. Ann. Rev. Ecol. Syst. 9: 393–426.

    Article  Google Scholar 

  • Weir, S.S. & C.C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Article  Google Scholar 

  • Wright, S., 1931. Evolution in mendelian populations. Genetics 16: 97–159.

    Google Scholar 

  • Wright, S., 1943. Isolation by distance. Genetics 28: 114–138.

    Google Scholar 

  • Wright, S., 1969. Evolution and the genetics of populations 2. The theory of gene frequencies. The University of Chicago Press, Chicago.

    Google Scholar 

  • Wright, S., 1978. Evolution and the genetics of populations 4. Variability within and among populations. The University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martino, A.M., Capanna, E. & Filippucci, M.G. Allozyme variation and divergence in the phyllotine rodent Calomys hummelincki (Husson, 1960). Genetica 110, 163–175 (2000). https://doi.org/10.1023/A:1017957801656

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017957801656

Navigation