Skip to main content
Log in

Mutation and senescence: where genetics and demography meet

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Two evolutionary genetic models–mutation accumulation and antagonistic pleiotropy–have been proposed to explain the origin and maintenance of senescence. In this paper, we focus our attention on the mutation accumulation model. We re-examine previous evidence for mutation accumulation in light of new information from large-scale demographic experiments. After discussing evidence for the predictions that have been put forth from models of mutation accumulation, we discuss two critical issues at length. First, we discuss the possibility that classical fruit fly stock maintenance regimes may give rise to spurious results in selection studies of aging. Second, we consider evidence for the assumptions underlying evolutionary models of aging. These models assume that mutations act additively on age-specific survival rate, that there exist mutations whose effects are confined to late age-classes, and that all mutations have equal effects. Recent empirical evidence suggests that each of these three assumptions is unlikely to be true. On the basis of these results, we do not conclude that mutation accumulation is no longer a valid explanation for the evolution of aging. Rather, we suggest that we now need to begin developing more biologically realistic genetic models for the evolution of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P., 1991. The fitness costs of senescence: the evolutionary importance of events in early adult life. Evolutionary Ecology 5: 343-360.

    Article  Google Scholar 

  • Ashburner, M., 1989. Drosophila: A Laboratory Handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Bell, G. & V. Koufopanou, 1985. The cost of reproduction. Oxford Surveys in Evolutionary Biology 3: 83-131.

    Google Scholar 

  • Carey, J.R., P. Liedo, D. Orozco & J.W. Vaupel, 1992. Slowing of mortality rates at older ages in large medfly cohorts. Science 258: 457-461.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1990. Optimization models, quantitative genetics, and mutation. Evolution 44: 520-538.

    Article  Google Scholar 

  • Charlesworth, B., 1994. Evolution in Age-Structured Populations. Cambridge University Press, Cambridge.

    Google Scholar 

  • Charlesworth, B. & K.A. Hughes, 1996. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl. Acad. Sci. USA. 93: 6140-6145.

    Article  PubMed  CAS  Google Scholar 

  • Chippindale, A.K., D.T. Hoang, P.M. Service & M.R. Rose, 1994. The evolution of development in Drosophila melanogaster selected for postponed senescence. Evolution 48: 1880-1899.

    Article  Google Scholar 

  • Chippindale, A.K., A.M. Leroi, S.B. Kim & M.R. Rose, 1993. Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction. J. Evol. Biol. 6: 171-193.

    Article  Google Scholar 

  • Clark, A.G., 1987. Senescence and the genetic correlation hang-up. Amer. Natur. 129: 932-940.

    Article  Google Scholar 

  • Clark, A.G. & R.N. Guadalupe, 1995. Probing the evolution of senescence in Drosophila melanogaster with P-element tagging. Genetica 96: 225-234.

    Article  PubMed  CAS  Google Scholar 

  • Clark, A.G. & L. Wang, 1994. Comparative evolutionary analysis of metabolism in nine Drosophila species. Evolution 48: 1230-1243.

    Article  CAS  Google Scholar 

  • Comfort, A., 1979. The Biology of Senescence, 3rd ed. Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Comstock, R.E. & H.F. Robinson, 1952. Estimation of average dominance of genes, pp. 494-516 in Heterosis, edited by J. W. Gowen. Iowa State College Press, Ames, Iowa.

    Google Scholar 

  • Curtsinger, J.W., 1995. Density, mortality, and the narrow view. Genetica 96: 187-189.

    Article  Google Scholar 

  • Curtsinger, J.W., H.H. Fukui, A.A. Khazaeli, A. Kirscher, S.D. Pletcher, D.E.L. Promislow & M. Tatar, 1995. Genetic variation and aging. Annual Review of Genetics 29: 553-75.

    Article  PubMed  CAS  Google Scholar 

  • Curtsinger, J.W., H.H. Fukui, D.R. Townsend & J.W. Vaupel, 1992. Demography of genotypes: Failure of the limited lifespan paradigm in Drosophila melanogaster. Science 258: 461-463.

    PubMed  CAS  Google Scholar 

  • Dobzhansky, T., R.C. Lewontin & O. Pavlovsky, 1964. The capacity for increase in chromosomally polymorphic and monomorphic populations of Drosophila pseudoobscura. Heredity 19: 597-614.

    PubMed  CAS  Google Scholar 

  • Ebert, D., L. Yampolsky & A.J. Van Noordwijk, 1993. Genetics of life-history in Daphnia magna. 2. Phenotypic plasticity. Heredity 70: 344-352.

    Google Scholar 

  • Engström, G., L.E. Liljedahl, M. Rasmuson & T. Björklund, 1989. Expression of genetic and environmental variation during ageing. I. Estimation of variance components for number of adult offspring in Drosophila melanogaster. Theoretical and Applied Genetics 77: 119-122.

    Article  Google Scholar 

  • Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics. Longman Group Limited, Essex.

    Google Scholar 

  • Finch, C.E., M.C. Pike & M. Witten, 1990. Slow mortality rate accelerations during aging in some animals approximate that of humans. Science 249: 902-906.

    PubMed  CAS  Google Scholar 

  • Fukui, H.H., L. Ackert & J.W. Curtsinger, 1996. Deceleration of age-specific mortality rates in chromosomal homozygotes and heterozygotes of Drosophila melanogaster. Experimental Gerontology 31: 517-531.

    Article  PubMed  CAS  Google Scholar 

  • Graves, J.L., 1995. Population density effects on longevity revisited: Anote in response to ‘Density and age-specific mortality’ by J.W. Curtsinger. Genetica 96: 183-186.

    Article  Google Scholar 

  • Hamilton, W.D., 1966. The moulding of senescence by natural selection. J. Theor. Biol. 12: 12-45.

    Article  PubMed  CAS  Google Scholar 

  • Houle, D., K.A. Hughes, D.K. Hoffmaster, J. Ihara, S. Assimacopoulos, D. Canada & B. Charlesworth, 1994. The effects of spontaneous mutation on quantitative traits. I. Variances and covariances of life history traits. Genetics 138: 773-785.

    PubMed  CAS  Google Scholar 

  • Hughes, K.A., 1995. The evolutionary genetics of male life-history characters in Drosophila melanogaster. Evolution 49: 521-537.

    Article  Google Scholar 

  • Hughes, K.A. & B. Charlesworth, 1994. A genetic analysis of senescence in Drosophila. Nature 367: 64-66.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1996. Nature of deleterious mutation load in Drosophila. Genetics 144: 1993-1999.

    PubMed  CAS  Google Scholar 

  • Kondrashov, A.S., 1988. Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435-40.

    Article  PubMed  CAS  Google Scholar 

  • Kosuda, K., 1985. The aging effect on male mating activity in Drosophila melanogaster. Behav. Genet. 15: 297-303.

    Article  PubMed  CAS  Google Scholar 

  • Luckinbill, L.S., R. Arking, M.J. Clare, W.J. Cirocco & S.A. Buck, 1984. Selection for delayed senescence in Drosophila melanogaster. Evolution 38: 996-1003.

    Article  Google Scholar 

  • Lynch, M., J. Conery & R. Burger, 1995. Mutation accumulation and the extinction of small populations. Amer. Natur. 146: 489-518.

    Article  Google Scholar 

  • Mackay, T.F.C., J.D. Fry, R.F. Lyman & S.V. Nuzhdin, 1994. Polygenic mutation in Drosophila melanogaster - Estimates from response to selection in inbred lines. Genetics 136: 937-951.

    PubMed  CAS  Google Scholar 

  • Medawar, P.B., 1952. An Unsolved Problem in Biology. H.K. Lewis, London.

    Google Scholar 

  • Mueller, L.D., 1987. Evolution of accelerated senescence in laboratory populations of Drosophila. Proc. Natl. Acad. Sci. USA. 84: 1974-1977.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, L.D. & F.J. Ayala, 1981. Tradeoff between r-selection and K-selection in Drosophila populations. Proc. Natl. Acad. Sci. USA. 78: 1303-1305.

    Article  PubMed  Google Scholar 

  • Mukai, T., H.E. Schaffer, T.K. Watanabe & J.F. Crow, 1974. The genetic variance for viability and its components in a population of Drosophila melanogaster. Genetics 72: 763-769.

    Google Scholar 

  • Nuzhdin, S.V., E.G. Pasyukova, C.L. Dilda, Z.B. Zeng & T.F.C. Mackay, 1997. Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 94: 9734-9739.

    Article  PubMed  CAS  Google Scholar 

  • Orr, W.C. & R.S. Sohal, 1994. Extension of lifespan by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263: 1128-1130.

    PubMed  CAS  Google Scholar 

  • Partridge, L. & R. Andrews, 1985. The effect of reproductive activity on the longevity of male Drosophila melanogaster is not caused by an acceleration of ageing. J. Insect Physiol. 31: 393-5.

    Article  Google Scholar 

  • Partridge, L. & N.H. Barton, 1993. Optimality, mutation and the evolution of aging. Nature 362: 305-311.

    Article  PubMed  CAS  Google Scholar 

  • Partridge, L. & N.H. Barton, 1996. On measuring the rate of ageing. Proc. R. Soc. Lond. B. 263: 1365-1371.

    Google Scholar 

  • Partridge, L. & K. Fowler, 1992. Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution 46: 76-91.

    Article  Google Scholar 

  • Pletcher, S.D., D. Houle & J.W. Curtsinger, 1998. Age-specific properties of spontaneous mutations affecting mortality in Drosophila melanogaster. Genetics 148: 287-303.

    PubMed  CAS  Google Scholar 

  • Pomiankowski, A., Y. Iwasa & S. Nee, 1991. The evolution of costly mate preferences. I. Fisher and biased mutation. Evolution 45: 1422-1430.

    Article  Google Scholar 

  • Promislow, D.E.L., 1991. Senescence in natural populations of mammals: A comparative study. Evolution 45: 1869-1887.

    Article  Google Scholar 

  • Promislow, D.E.L., M. Tatar, A. Khazaeli & J.W. Curtsinger, 1996. Age-specific patterns of genetic variance in Drosophila melanogaster: I. Mortality. Genetics 143: 839-848.

    PubMed  CAS  Google Scholar 

  • Promislow, D.E.L., M. Tatar, S. Pletcher & J.R. Carey, Submitted. Below-threshold mortality: Implications for studies in evolution, ecology and demography. Journal of Evolutionary Biology.

  • Rogina, B. & S.L. Helfand, 1995. Regulation of gene-expression is linked to life-span in adult Drosophila. Genetics 141: 1043-1048.

    PubMed  CAS  Google Scholar 

  • Rogina, B. & S.L. Helfand, 1996. Timing of expression of a gene in the adult Drosophila is regulated by mechanisms independent of temperature and metabolic rate. Genetics 143: 1643-1651.

    PubMed  CAS  Google Scholar 

  • Rose, M.R., 1984. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38: 1004-1010.

    Article  Google Scholar 

  • Rose, M.R., 1985. Life history evolution with antagonistic pleiotropy and overlapping generations. Theor. Pop. Biol. 28: 342-358.

    Article  Google Scholar 

  • Rose, M.R., 1991. Evolutionary Biology of Aging. Oxford University Press, Oxford.

    Google Scholar 

  • Rose, M.R. & B. Charlesworth, 1980. A test of evolutionary theories of senescence. Nature 287: 141-142.

    Article  PubMed  CAS  Google Scholar 

  • Rose, M.R. & B. Charlesworth, 1981a. Genetics of life-history evolution in Drosophila melanogaster. II. Exploratory selection experiments. Genetics 97: 187-196.

    PubMed  CAS  Google Scholar 

  • Rose, M.R. & B. Charlesworth, 1981b. Genetics of life-history evolution in Drosophila melanogaster. I. Sib analysis of adult females. Genetics 97: 173-186.

    PubMed  CAS  Google Scholar 

  • Searle, S.R., G. Casella & C.E. McCulloch, 1992. Variance Components. Wiley, New York.

    Google Scholar 

  • Service, P.M., E.W. Hutchinson & M.R. Rose, 1988. Multiple genetic mechanisms for the evolution of senescence in Drosophila melanogaster. Evolution 42: 708-716.

    Article  Google Scholar 

  • Service, P.M. & M.R. Rose, 1985. Genetic covariation among life-history components: the effects of novel environments. Evolution 39: 943-945.

    Article  Google Scholar 

  • Simmons, M.J. & J.F. Crow, 1977. Mutations affecting fitness in Drosophila populations. Ann. Rev. Genet. 11: 49-78.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, Y., 1993. A genetic mechanism for the evolution of senescence in Callosobruchus chinensis (the azuki bean weevil). Heredity 70: 318-321.

    Google Scholar 

  • Tatar, M. & J.R. Carey, 1995. Nutrition mediates reproductive trade-offs with age-specific mortality in the beetle Callosobruchus maculatus. Ecology 76: 2066-2073.

    Article  Google Scholar 

  • Tatar, M., J.R. Carey & J.W. Vaupel, 1993. Long term cost of reproduction without accelerated senescence in Callosobruchus maculatus: analysis of age-specific mortality. Evolution 47: 1302-1312.

    Article  Google Scholar 

  • Tatar, M., A. Khazaeli & J.W. Curtsinger, 1997. Chaperoning extended life. Nature 390: 30.

    Article  PubMed  CAS  Google Scholar 

  • Tatar, M., D.E.L. Promislow, A. Khazaeli & J. Curtsinger, 1996. Age-specific patterns of genetic variance in Drosophila melanogaster: II. Fecundity and its genetic correlation with age-specific mortality. Genetics 143: 849-858.

    PubMed  CAS  Google Scholar 

  • Vaupel, J.W., T.E. Johnson & G.J. Lithgow, 1994. Rates of mortality in populations of Caenorhabditis elegans. Science 266: 826.

    PubMed  CAS  Google Scholar 

  • Wattiaux, J.M., 1968a. Cumulative parental effects in Drosophila subobscura. Evolution 22: 406-421.

    Article  Google Scholar 

  • Wattiaux, J.M., 1968b. Parental age effects in Drosophila pseudoobscura. Exp. Geront. 3: 55-61.

    Article  CAS  Google Scholar 

  • Weindruch, R. & R.L. Walford, 1982. Dietary restriction in mice beginning at 1 year of age: Effect on lifespan and spontaneous cancer incidence. Science 215: 1415-1418.

    PubMed  CAS  Google Scholar 

  • Williams, G.C., 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398-411.

    Article  Google Scholar 

  • Yu, B.P., E.J. Masoro & C.A. McMahan, 1985. Nutritional influences on aging of Fischer 344 rats: I. Physical, metabolic, and longevity characteristics. J. Gerontology 40: 656-670.

    Google Scholar 

  • Zwaan, B., R. Bijlsma & R. F. Hoekstra, 1995. Artificial selection for development time in Drosophila melanogaster in relation to the evolution of aging: Direct and correlated responses. Evolution 49: 635-648.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Promislow, D.E., Tatar, M. Mutation and senescence: where genetics and demography meet. Genetica 102, 299–314 (1998). https://doi.org/10.1023/A:1017047212008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017047212008

Navigation