Skip to main content
Log in

Mechanism of zinc resistance in Pseudomonas putida strain S4

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The mechanism of Zn resistance in multiple metal-resistant Pseudomonas putida strain S4 is based on inducible efflux. An ATPase in the strain S4 mediated active extrusion of Zn2+, which occurred during the exponential phase of growth. The ATPase activity was inhibited by micromolar concentrations (50 μM) of vanadate, suggesting the involvement of a P-type ATPase. The effluxed Zn2+ were not ejected out of the cell but stored in the outer membrane and periplasm, which provided the required binding sites. The strain S4, thus, employs a dual strategy of efflux and binding to bring about a proper management of essential ions like Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayle, D., Wangler, S., Weitzenegger, T., Steinhilbur, W., Volz, J., Przybyliski, M., Schafer, K.P., Sachs, G. & Melchers, K. 1998 Properties of the P-type ATPases encoded by the copAP operons of Helicobacter pylori and Helicobacter felis. Journal of Bacteriology 180, 317–329.

    Google Scholar 

  • Beard, S.J., Hashim, R., Membrillo-Hernandez, J., Hughes, M.N. & Poole, R.K. 1997 Zn(II) tolerance in Escherichia coli K-12: evidence that zntA gene (o732) encodes a cation-transport ATPase. Molecular Microbiology 25, 883–891.

    Google Scholar 

  • Bhagat, R. & Srivastava, S. 1993 Biorecovery of zinc by Pseudomonas stutzeri RS34. In Biohydrometallurgical Technologies, eds. Torma, A.E., Apel, M.L. & Brierley, C.L.vol. II, pp. 209–217. Pennsylvania: The Minerals, Metals and Materials Society. ISBN 0–87339–252–3.

    Google Scholar 

  • Brown, N.L., Barrett, S.R., Camakaris, J., Lee, B.T.O. & Rouch, D.A. 1995 Molecular genetics and transport analysis of the copper resistance determinants (pco) from Escherichia coli plasmid pRJ1004. Molecular Microbiology 17, 1153–1156.

    Google Scholar 

  • Cervantes, C. & Silver, S. 1996 Metal resistances in pseudomonads, genes and mechanisms. In Molecular Biology of Pseudomonads, eds. Nakazawa, T., Furukawa, K., Haas, D. & Silver, S. pp. 398–416. Washington, DC: ASM Press. ISBN 1–55581–104–3.

    Google Scholar 

  • Cha, J.S. & Cooksey, D.A. 1991 Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proceedings of the National Academy of Sciences of the USA 88, 8915–8919.

    Google Scholar 

  • Collard, J., Provoost, A., Taghavi, S. & Mergeay, M. 1993 A new type of Alcaligenes eutrophus CH34 zinc resistance generated by mutations affecting regulation of cnr cobalt-nickel resistance system. Journal of Bacteriology 175, 779–784.

    Google Scholar 

  • Diels, L., Dong, Q., van der Lelie, D., Baeyens, W. & Mergeay, M. 1995 The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to removal of heavy metals. Journal of Industrial Microbiology 14, 142–153.

    Google Scholar 

  • Gilotra, U. & Srivastava, S. 1997 Plasmid-encoded sequestration of copper by Pseudomonas pickettii strain US321. Current Microbiology 34, 378–381.

    Google Scholar 

  • Gupta, A., Matsui, K., Lo, J. & Silver, S. 1999 Molecular basis for resistance to silver cations in Salmonella. Nature (Medicine) 5, 183–188.

    Google Scholar 

  • Krishnamurthy, S., Chatterjee, U., Gupta, V., Prasad, R., Das, P., Snehlata, P., Hasnain, S.E. & Prasad, R. 1998 Deletion of transmembrane domain 12 of CDR1. A multidrug transport from Candida albicans leads to altered specificity, expression of yeast multi-drug transporter in Baculovirus expression system. Yeast 14, 535–550.

    Google Scholar 

  • Mago, R. & Srivastava, S. 1994 Uptake of zinc in Pseudomonas sp. strain UDG26. Applied and Environmental Microbiology 60, 2367–2370.

    Google Scholar 

  • Nies, D.H. 1995 The cobalt, zinc and cadmium efflux system Czc ABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. Journal of Bacteriology 177, 2454–2458.

    Google Scholar 

  • Nies, D.H. 1999 Microbial heavy metal resistance. Applied Microbiology and Biotechnology 31, 730–750.

    Google Scholar 

  • Nies, D.H. & Silver, S. 1995 Ion efflux systems involved in bacterial metal resistances. Journal of Industrial Microbiology 14, 186–199.

    Google Scholar 

  • Okkeri, J. & Haltia, T. 1999 Expressions and mutagenesis of a transporting P-type ATPase from Escherichia coli. Biochemistry 38, 14,109–14,116.

    Google Scholar 

  • Paulsen, I.T. & Saier Jr., M.H. 1997 A novel family of ubiquitous heavy metal ion transport proteins. Journal of Membrane Biology 156, 99–103.

    Google Scholar 

  • Rensing, C., Mitra, B. & Rosen, B.P. 1997 The zntA gene of E. coli encodes a Zn(II)-translocating P-type ATPase. Proceedings of the National Academy of Science of the USA 94, 14,326–14,331.

    Google Scholar 

  • Rouch, D.A. & Brown, N.L. 1997 Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistant determinant pco. Microbiology 143, 1191–1202.

    Google Scholar 

  • Rouch, D.A., Lee, B.T.O. & Morby, A.P. 1995 Understanding cellular responses to toxic agents: a model for mechanism choice in bacterial metal resistance. Journal of Industrial Microbiology 14, 132–141.

    Google Scholar 

  • Saxena, D. 1998 Genetic analysis of copper management of Pseudomonas putida strain S4-a copper mine isolate. Ph.D Thesis, Delhi University.

  • Saxena, D. & Srivastava, S. 1998 Precipitation of copper by carbon-starved cells of Pseudomonas putida strain S4. World Journal of Microbiology and Biotechnology 14, 291–293.

    Google Scholar 

  • Silver, S. 1998 Genes for all metals — a bacterial view of periodic table. The 1996 Thom award lecture. Journal of Industrial Microbiology and Biotechnology 20, 1–12.

    Google Scholar 

  • Solioz, M. & Odermatt, A. 1995 Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. Journal of Biological Chemistry 270, 9217–9221.

    Google Scholar 

  • Srivastava, S., Choudhury, R. & Joshi, N. 1999 Active efflux — a mechanism for metal ion resistance in bacteria. In Advances in Microbial Biotechnology, eds. Tewari, J.P., Lakhanpal, T.N., Singh, J., Gupta, R. & Chamola, B.P. pp. 25–41. New Delhi: APH Publishing Corporation, ISBN 81–7648–078–9.

    Google Scholar 

  • Srivastava, S., Mago, R. & Bhagat, R. 1998 Genetics of heavy metal resistance in soil bacteria. In Microbes, For Health, Wealth and Sustainable Environment, ed. Varma, A. pp. 489–512. New Delhi: MPH, ISBN 81–85048–38-X.

    Google Scholar 

  • Thelwell, C., Robinson, N.J. & Turner-Cavet, J.S. 1998 An SmtB like repressor from Synechocystis PCC6803 regulates a zinc exporter. Proceedings of the National Academy of Sciences of the USA 95, 10,728–10,733.

    Google Scholar 

  • Wood, P.M. 1978 Periplasmic location of the terminal reductase in nitrite respiration. FEBS Letters 92, 214–218.

    Google Scholar 

  • Xiong, A. & Jayaswal, R.K. 1998 Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus. Journal of Bacteriology 180, 4024–4029.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, R., Srivastava, S. Mechanism of zinc resistance in Pseudomonas putida strain S4. World Journal of Microbiology and Biotechnology 17, 149–153 (2001). https://doi.org/10.1023/A:1016666000384

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016666000384

Navigation