Skip to main content
Log in

Opioid-Induced Respiratory Depression and Analgesia May Be Mediated by Different Subreceptors

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Use of selective delta opioid antagonists provide evidence that the delta receptor within the brain seems an integrated part in the mediation of respiratory depression induced by a potent analgesic like fentanyl. Low doses of the delta antagonists RX-8008M (3–6 µg/kg) as well as ICI 174,864 (3–6 µg/kg) reversed fentanyl-related respiratory depression (arterial blood gases) in the unanesthetized canine. Opioid-induced blockade of afferent sensory nerve volleys (amplitude height of the somatosensory-evoked potential) could be reversed only by a high dose (9 µg/kg) of RX-8008M. Depression of amplitude height of the SEP could not be reversed by ICI 174,864 over the whole dose range (3–6–9 µg/kg). In comparison, naloxone (1–5–10 µg/kg) not only reversed depression of P aO2, it also reversed the blockade of afferent sensory nerve impulses in the low (5-µg/kg)-dose range. A highly selective delta antagonist may have a therapeutic value in reversing opioid-related respiratory depression, resulting in little or no attenuation of analgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. R. Martin, E. A. Eades, J. A. Thompson, R. E. Huppler, and P. E. Gilbert. The effects of morphine and nalorphine-like drugs in the non-dependant and morphine-dependant chronic spinal dog. J. Pharmacol. Exp. Ther. 197:517–532 (1976).

    Google Scholar 

  2. W. R. Martin. Mini-Symposium II. Multiple opioid receptors. Life Sci. 28:1547–1554 (1981).

    Google Scholar 

  3. D. H. Thorpe. Opiate structure and activity—a guide to understanding the receptor. Anesth. Analg. 63:143–151 (1984).

    Google Scholar 

  4. J. E. Leysen, W. Gommeren, and C. J. E. Niemegeers. 3H-sufentanil, a superior ligand for the mu-opiate receptor: Binding properties and regional distribution in rat brain and spinal cord. Eur. J. Pharmacol. 87:209–225 (1983).

    Google Scholar 

  5. W. D. Bowen, S. Gentleman, M. Herkenhan, and C. Pert. Interconversion of opiate receptors in rat striatal patches. Proc. Natl. Acad. Sci. 78:4818–4827 (1981).

    Google Scholar 

  6. R. J. D'Amato and J. W. Holaday. Multiple opiate receptors in endotoxic shock: Evidence for delta involvement and mu-delta interactions in vivo. Proc. Natl. Acad. Sci. USA 81:2898–2901 (1984).

    Google Scholar 

  7. R. B. Rothman and T. C. Westfall. Allosteric modulation by leucine-enkephalin of (3H) naloxone binding in rat brain. Eur. J. Pharmacol. 72:365–368 (1981).

    Google Scholar 

  8. J. L. Vaught, R. B. Rothman, and T. C. Westfall. Mu and delta receptors: Their role in analgesia and in the differential effects of opioid peptides on analgesia. Life Sci. 30:1443–1455 (1982).

    Google Scholar 

  9. C. F. C. Smith. A potent opioid antagonist with some delta selectivity. Life Sci. 40:267–274 (1987).

    Google Scholar 

  10. B. S. Cotton, M. G. Miles, L. Miller, J. S. Shaw, and D. Timms. ICI 174,864: A highly selective antagonist for the opioid delta-receptor. Eur. J. Pharmacol. 97:331–332 (1984).

    Google Scholar 

  11. C. R. Chapmann, A. C. N. Chen, and S. W. Harkins. Brain evoked potentials as correlates of laboratory pain: A review and perspective. In J. J. Bonica, J. C. Liebeskind, and D. G. Albe-Fessard (eds.), Advances in Pain Research and Therapy, Raven Press, New York, 1979, Vol. 3, pp. 791–803.

    Google Scholar 

  12. E. Freye, R. Buhl, and F. Ciaramelli. Somatosensory-evoked potentials as predictors of the analgesic efficacy of nalbuphine, a mixed narcotic analgesic. Pain Clin. 1:225–231 (1987).

    Google Scholar 

  13. B. Bromm and E. Scharein. Cerebral responses in man evoked by electrical and mechanical stimuli. Neurosci. Lett. Suppl. 3:257 (1979).

    Google Scholar 

  14. P. Rohdewald, H. Derendorf, G. Drehsen, C. E. Elger, and O. Knoll. Changes in cortical evoked potentials as correlates of the efficacy of weak analgesics. Pain 12:329–341 (1982).

    Google Scholar 

  15. A. Wauquier. Neurophysiologische Untersuchungen mit dem kurzwirksamen, intravenösen Analgetikum Alfentanil. In A. Doenicke (eds.), Alfentanil, Springer, Berlin, Heidelberg, New York, Tokyo, 1982, pp. 78–89.

    Google Scholar 

  16. St. Kubicki, R. Stölzel, and R. Haas. DeAuslöschung des Fentanyl-Effektes durch Pentazocine im EEG und somato-sensorisch evoziertem Potential. In W. F. Henschel (eds.), Postoperative Schmerzbekdmpfung, Schattauer, Stuttgart, New York, 1972, pp. 103–110.

    Google Scholar 

  17. J. S. Mc Kenzie and N. R. Beechy. The effects of morphine and pethidine on somatic evoked responses in the midbrain of the cat, and their relevance to analgesia. Electroenceph. Clin. Neurophysiol. 14:501–519 (1962).

    Google Scholar 

  18. P. L. Gildenberg, K. S. Murthy, M. W. Adler, and E. A. Frost. The effect of morphine on evoked potentials in naive, tolerant and withdrawn rats. In H. W. Kosterlitz (eds.), Opiates and Endogenous Opioid Peptides, Elsevier/North-Holland, Amsterdam, 1976, pp. 247–256.

    Google Scholar 

  19. G. W. Pasternak, S. R. Childers, and S. H. Snyder. Naloxazone, a long acting opiate antagonist. Effects on analgesia in intact animals and on opiate receptor binding in vivo. J. Pharmacol. Exp. Ther. 214:455–516 (1980).

    Google Scholar 

  20. M. Wüster, M. Rubini, and R. Schulz. The preference of putative proenkephalins for different types of opiate receptors. Life Sci. 29: 1219–1227 (1981).

    Google Scholar 

  21. G. W. Pasternak and P. J. Wood. Minireview: Multiple mu opiate receptors. Life Sci. 38:1889–1898 (1986).

    Google Scholar 

  22. A. Pazos and J. Florez. Interaction of naloxone with mu-and delta-opioid agonists on respiration of rats. Eur.J. Pharmacol. 87:1309–1314 (1983).

    Google Scholar 

  23. J. S. Rosenbaum, N. H. G. Holford, and W. Sadee. In vivo receptor binding of opioid drugs at the mu site. J. Pharmacol. Exp. Ther. 233:735–740 (1985).

    Google Scholar 

  24. H. Stowell. Cerebral slow waves related to the perception of pain. Brain Res. Bull. 2:23–30 (1977).

    Google Scholar 

  25. J. A. Fleetham et al. Endogenous opiates and chemical control of breathing in humans. Am. Rev. Resp. Dis. 121: 585–590 (1980).

    Google Scholar 

  26. G. S. F. Ling, K. Spiegel, S. H. Lockhart, and G. W. Pasternak. Separation of opioid analgesia from respiratory depression: Evidence of different receptor mechanism. J. Pharmacol. Exp. Ther. 232:149–155 (1985).

    Google Scholar 

  27. A. Dray, L. Nunan, and W. Wire. Meptazinol: Unusual opioid receptor activity at supraspinal and spinal sites. Neuropharmacology 25:343–349 (1986).

    Google Scholar 

  28. G. W. Pasternak, A. Zhang, and L. Tecott. Developmental differences between high and low affinity opiate binding sites: Their relationship to analgesia and respiratory depression. Life Sci. 27:1185–1190 (1980).

    Google Scholar 

  29. S. Ward and A. E. Takemori. Determination of the relative involvement of μ-opioid receptors in opioid-induced depression of respiratory rate by use of β-funaltrexamine. Eur. J. Pharmacol. 87:1–6 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freye, E., Schnitzler, M. & Schenk, G. Opioid-Induced Respiratory Depression and Analgesia May Be Mediated by Different Subreceptors. Pharm Res 8, 196–199 (1991). https://doi.org/10.1023/A:1015887919560

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015887919560

Navigation