Skip to main content
Log in

B-branch electron transfer in reaction centers of Rhodobacter sphaeroides assessed with site-directed mutagenesis

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Mutants of Rhodobacter (Rba.) sphaeroides are described which were designed to study electron transfer along the so-called B-branch of reaction center (RC) cofactors. Combining the mutation L(M214)H, which results in the incorporation of a bacteriochlorophyll, β, for HA [Kirmaier et al. (1991) Science 251: 922–927] with two mutations, G(M203)D and Y(M210)W, near BA, we have created a double and a triple mutant with long lifetimes of the excited state P* of the primary donor P, viz. 80 and 160 ps at room temperature, respectively. The yield of P+QA formation in these mutants is reduced to 50 and 30%, respectively, of that in wildtype RCs. For both mutants, the quantum yield of P+HB formation was less than 10%, in contrast to the 15% B-branch electron transfer demonstrated in RCs of a similar mutant of Rba. capsulatus with a P* lifetime of 15 ps [Heller et al. (1995) Science 269: 940–945]. We conclude that the lifetime of P* is not a governing factor in switching to B-branch electron transfer. The direct photoreduction of the secondary quinone, QB, was studied with a triple mutant combining the G(M203)D, L(M214)H and A(M260)W mutations. In this triple mutant QA does not bind to the reaction center [Ridge et al. (1999) Photosynth Res 59: 9–26]. It is shown that B-branch electron transfer leading to P+QB formation occurs to a minor extent at both room temperature and at cryogenic temperatures (about 3% following a saturating laser flash at 20 K). In contrast, in wildtype RCs P+QB formation involves the A-branch and does not occur at all at cryogenic temperatures. Attempts to accumulate the P+QB state under continuous illumination were not successful. Charge recombination of P+QB formed by B-branch electron transfer in the new mutant is much faster (seconds) than has been previously reported for charge recombination of P+QB trapped in wildtype RCs (105 s) [Kleinfeld et al. (1984b) Biochemistry 23: 5780–5786]. This difference is discussed in light of the different binding sites for QB and QB that recently have been found by X-ray crystallography at cryogenic temperatures [Stowell et al. (1997) Science 276: 812–816]. We present the first low-temperature absorption difference spectrum due to P+QB .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alden RG, Parson WW, Chu ZT and Warshel A (1996) Orientation of the OH dipole of Tyrosine (M)210 and its effect on electrostatic energies in photosynthetic bacterial reaction centers. J Phys Chem 100: 16761-16770

    Article  CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987a) Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci USA 84: 5730-5734

    Article  PubMed  CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987b) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci USA 84: 6162-6166

    Article  PubMed  CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1988a) Structure of the reaction center from Rhodobacter sphaeroides R-26: protein-cofactor (quinones and Fe2+) interactions. Proc Natl Acad Sci USA 85: 8487-8491

    Article  PubMed  CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1988b) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1. In: Breton J and Verméglio A (eds) The Photosynthetic Bacterial Reaction Center. Structure and dynamics, pp 5-11. Plenum Press, New York

    Google Scholar 

  • Aumeier W, Eberl U, Ogrodnik A, Volk M, Scheidel G, Feick R, Plato M and Michel-Beyerle M-E (1990) Unidirectionality of charge separation in reaction centers of Rba. sphaeroides and Chloroflexus aurantiacus. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol I, pp 133-136. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Bixon M, Jortner J, Michel-Beyerle M-E and Ogrodnik A (1989) A superexchange mechanism for the primary charge separation in photosynthetic reaction centers. Biochim Biophys Acta 977: 273-286

    CAS  Google Scholar 

  • Bosch M K (1995). Primary photochemistry in photosynthetic reaction centers. A cw and pulsed EPR study. Dissertation, Leiden University, Leiden, The Netherlands

    Google Scholar 

  • Czarnecki K, Kirmaier C, Holten D and Bocian DF (1999) Vibrational and photochemical consequences of an Asp residue near the photoactive accessory bacteriochlorophyll in the photosynthetic reaction center. J Phys Chem A 103: 2235-2246

    Article  CAS  Google Scholar 

  • Chirino AJ, Lous EJ, Huber M, Allen JP, Schenck CC, Paddock ML, Feher G and Rees DC (1994) Crystallographic analyses of site-directed mutants of the photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 33: 4584-4593

    Article  PubMed  CAS  Google Scholar 

  • Dzuba SA, Proskuryakov II, Hulsebosch RJ, Bosch MK, Gast P and Hoff AJ (1996) Control of radical pair lifetimes by microwave irradiation: Application to photosynthetic reaction centres. Chem Phys Lett 253: 361-366

    Article  CAS  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK and Michel H (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions. Structure 2: 925-936

    Article  PubMed  CAS  Google Scholar 

  • Feher G and Okamura MY (1978) Chemical composition and properties of reaction centers. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 349-386. Plenum Press, New York/London

    Google Scholar 

  • Franken EM (1997) Primary processes and electron transfer in anoxygenic photosynthetic bacteria. Dissertation, Leiden University, Leiden, The Netherlands

    Google Scholar 

  • Fyfe PK, Ridge JP, McAuley KE, Cogdell RJ, Isaacs NW and Jones MR (2000) Structural consequences of the replacement of glycine M203 with aspartic acid in the reaction center from Rhodobacter sphaeroides. Biochemistry 39: 5953-5960

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith JO and Boxer SG (1996) Rapid isolation of bacterial photosynthetic reaction centers with an engineered poly-histidine tag. Biochim Biophys Acta 1276: 171-175

    Article  Google Scholar 

  • Gunner MR, Nicholls A and Honig B (1996) Electrostatic potentials in Rhodopseudomonas viridis reaction centers: implications for the driving force and directionality of electron transfer. J Phys Chem 100: 4277-4291

    Article  CAS  Google Scholar 

  • Hartwich G, Bieser G, Langenbacher T, Müller P, Richter M, Ogrodnik A, Scheer H and Michel-Beyerle M-E (1997) B-branch electron transfer in bacterial photosynthetic reaction centers by energetically activating A-branch charge separation. Biophys J 72: A8-E7

    Google Scholar 

  • Hartwich G, Müller P, Richter M, Bieser G, Ogrodnik A, Scheer H and Michel-Beyerle M-E (1998) Activating A-branch electron transfer in bacterial photosynthetic reaction centers imposes B-branch charge separation. XIth International Congress on Photosynthesis (Budapest). Abstr, p 51

  • Heller BA, Holten D and Kirmaier C (1995) Control of electron transfer between the L-and M-sides of photosynthetic reaction centers. Science 269: 940-945

    PubMed  CAS  Google Scholar 

  • Heller BA, Holten D and Kirmaier C (1996) Effects of Asp residues near the L-side pigments in bacterial reaction centers. Biochemistry 35: 15418-15427

    Article  PubMed  CAS  Google Scholar 

  • Hoff AJ (1988). Nomen est omen. A note on nomenclature. In: Breton, J and Verméglio A (eds) The Bacterial Photosynthetic Center: Structure and Dynamics, pp 98-99. Plenum Press, New York

    Google Scholar 

  • Huber H, Meyer M, Nagele T, Hartl I, Scheer H, Zinth W and Wachtveitl J (1995) Primary photosynthesis in reaction centers containing four different types of electron accepters at site HA. Chem Phys 197: 297-305

    Article  CAS  Google Scholar 

  • Ivashin N, Kallebring B, Larsson S and Hansson O (1998) Charge separation in photosynthetic reaction centers. J Phys Chem B 102: 5017-5022

    Article  CAS  Google Scholar 

  • Katilius E, Turanchik T, Lin S, Taguchi AKW and Woodbury NW (1999) B-side electron transfer in a Rhodobacter sphaeroides reaction center mutant in which the B-side monomer bacteriochlorophyll is replaced with bacteriopheophytin. J Phys Chem B 103: 7386-7389

    Article  CAS  Google Scholar 

  • Kennis JTM, Streltsov AM, Aartsma TJ, Nozawa T and Amesz J (1996) Energy transfer and exciton coupling in isolated B800-850 complexes of the photosynthetic purple sulfur bacterium Chromatium tepidum. The effect of structural symmetry on bacteriochlorophyll excited states. J Phys Chem 100: 2438-2442

    Article  CAS  Google Scholar 

  • Kennis JTM, Shkuropatov AY, van Stokkum IHM., Gast P, Hoff AJ, Shuvalov VA and Aartsma TJ (1997a) Formation of a long-lived P+BA - state in plant pheophytin-exchanged reaction centers of Rhodobacter sphaeroides R26 at low temperature. Biochemistry 36: 16231-16238

    Article  PubMed  CAS  Google Scholar 

  • Kennis JTM, Streltsov AM, Permentier H, Aartsma TJ and Amesz J (1997b) Exciton coherence and energy transfer in the LH2 antenna complex of Rhodopseudomonas acidophila at low temperature. J Phys Chem B 101: 8369-8374

    Article  CAS  Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985a) Temperature and detection-wavelength dependence of the picosecond electrontransfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process. Biochim Biophys Acta 810: 33-48

    Article  CAS  Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985b) Picosecond-photodichroism studies of the transient states in Rhodopseudomonas sphaeroides reaction centers at 5 K. Effects of electron transfer on the six bacteriochlorin pigments. Biochim. Biophys. Acta 810: 49-61

    Article  CAS  Google Scholar 

  • Kirmaier C, Gaul D, DeBey R, Holten D and Schenck CC (1991). Charge separation in a reaction center incorporating bacteriochlorophyll for photoactive bacteriopheophytin. Science 251: 922-927

    PubMed  CAS  Google Scholar 

  • Kirmaier C, Weems D, and Holten D (1999) M-side electron transfer in reaction center mutants with a lysine near the nonphotoactive bacteriochlorophyll. Biochemistry 38: 11516-11530

    Article  PubMed  CAS  Google Scholar 

  • Kirmaier C, He C and Holten D (2001) Manipulating the direction of electron transfer in the bacterial reaction center by swapping Phe for Tyr near BChlM (L181) and Tyr for Phe near BChlL (M208). Biochemistry 40: 12132-12139

    Article  PubMed  CAS  Google Scholar 

  • Kleinfeld D, Okamura MY and Feher G (1984a) Electron transfer in reaction centers of Rhodopseudomonas sphaeroides. I. Determination of the charge recombination pathway of D+QAQB ? and free energy and kinetic relations between QA ?QB and QAQB ?. Biochim Biophys Acta 766: 126-140

    Article  PubMed  CAS  Google Scholar 

  • Kleinfeld D, Okamura MY and Feher G (1984b) Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes. Biochemistry 23: 5780-5786

    Article  PubMed  CAS  Google Scholar 

  • Kraulis PJ (1991). Molscript: A program to produce both detailed and schematic plots of protein structures. J Appl Cryst 24: 946-950

    Article  Google Scholar 

  • Labahn A, Paddock ML, McPherson PH, Okamura MY and Feher G (1994) Direct charge recombination from D+QAQB ? to DQAQB in bacterial reaction centers from Rhodobacter sphaeroides J Phys Chem 98: 3417-3423

    Article  CAS  Google Scholar 

  • Laible PD, Kirmaier C, Holten D, Tiede D, Schiffer M and Hanson DK (1998) Formation of P+QB ? via B-branch electron transfer in mutant reaction centers. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II, pp 849-852. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Landt O, Grunert H-P and Hahn U (1990) A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96: 125-128

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP and Williams JC (1994) Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91: 10265-10269

    Article  PubMed  CAS  Google Scholar 

  • McAuley-Hecht KE, Fyfe PK, Ridge JP, Prince SM, Hunter CN, Isaacs NW, Cogdell RJ, and Jones, MR (1998) Structural studies of wild-type and mutant reaction centers from an antenna-deficient strain of Rhodobacter sphaeroides: monitoring the optical properties of the complex from bacterial cell to crystal. Biochemistry 37: 4740-4750

    Article  PubMed  CAS  Google Scholar 

  • McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ and Jones MR (1999) Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci USA 96: 14706-14711

    Article  PubMed  CAS  Google Scholar 

  • McAuley KE, Fyfe PK, Ridge JP, Cogdell RJ, Isaacs NW and Jones MR (2000) Ubiquinone binding, ubiquinone exclusion, and detailed cofactor conformation in amutant bacterial reaction center. Biochemistry 39: 15032-15043

    Article  PubMed  CAS  Google Scholar 

  • Meyer M and Scheer H (1995) Reaction centers of Rhodobacter sphaeroides R26 containing C-3 acetyl and vinyl (bacterio) pheophytins at sites HA,HB. Photosynth Res 44: 55-65

    Article  CAS  Google Scholar 

  • Murchison HA, Alden RG, Allen JP, Peloquin JM, Taguchi AK, Woodbury NW and Williams JC (1993) Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: Phenylalanine to leucine at L167 and histidine to phenylalanine at L168. Biochemistry 32: 3498-3505

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan V, Parson WW, Davis D and Schenck CC (1993) Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers. Biochemistry 32: 12324-12336

    Article  PubMed  CAS  Google Scholar 

  • Okamura MY, Debus RJ, Kleinfeld D and Feher G (1982) Quinone binding sites in reaction centers from photosynthetic bacteria. In: Trumpower BL (ed) Function of Quinones in Energy Conserving Systems, pp 299-317. Academic Press, New York

    Google Scholar 

  • Otte SCM (1992) Pigment systems of photosynthetic bacteria and Photosystem II of green plants. Dissertation, Leiden University, Leiden, The Netherlands

    Google Scholar 

  • Paddock ML, Rongey SH, Feher G and Okamura MY (1989) Pathway of proton transfer in bacterial reaction centers: Replacement of glutamic acid 212 in the L subunit by glutamine inhibits quinone (secondary acceptor) turnover. Proc Natl Acad Sci USA 86: 6602-6606

    Article  PubMed  CAS  Google Scholar 

  • Parson WW (1978) Quinones as secondary electron acceptors. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 349-386. Plenum Press, New York/London

    Google Scholar 

  • Parson WW, Chu ZT and Warshel A (1990) Electrostatic control of charge separation in bacterial photosynthesis. Biochim Biophys Acta 1017: 251-272

    Article  PubMed  CAS  Google Scholar 

  • Prince RC and Youvan DC (1987) Isolation and spectroscopic properties of photochemical reaction centers from Rhodobacter capsulatus. Biochim Biophys Acta 890: 286-291

    Article  CAS  Google Scholar 

  • Ridge JP, van Brederode ME, Goodwin MG van Grondelle R and Jones MR (1999) Mutations that modify or exclude binding of the QA ubiquinone and carotenoid in the reaction center from Rhodobacter sphaeroides. Photosynth Res 59: 9-26

    Article  CAS  Google Scholar 

  • Robles SJ, Breton J and Youvan DC (1990) Partial symmetrization of the photosynthetic reaction center. Science 248: 1402-1405

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schmidt S, Arlt T, Hamm P, Huber H, Nagele T, Wachtveitl J, Zinth W, Meyer M and Scheer H (1995) Primary electrontransfer dynamics in modified bacterial reaction centers containing pheophytin-a instead of bacteriopheophytin-a. Spectrochim. Acta A 51: 1565-1578

    Article  Google Scholar 

  • Shochat S, Arlt T, Francke C, Gast P, Van Noort PI, Otte SCM, Schelvis HPM, Schmidt S, Vijgenboom E, Vrieze J, Zinth W and Hoff AJ (1994) Spectroscopic characterization of reaction centers of the (M)Y210W mutant of the photosynthetic bacterium Rhodobacter sphaeroides. Photosynth Res 40: 55-66

    Article  CAS  Google Scholar 

  • Shochat S, Gast P, Hoff AJ, Boender GJ, van Leeuwen S, van Liemt WBS, Vijgenboom E, Raap J, Lugtenburg J and de Groot HJM (1995) C-13 MAS NMR evidence for a homogeneously ordered environment of Tyrosine-M210 in reaction centres of Rhodobacter sphaeroides. Spectrochim Acta A 51: 135-144

    Article  Google Scholar 

  • Simon R, Preifer U and Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1: 784-791

    Article  CAS  Google Scholar 

  • Sistrom WR (1977) Transfer of chromosomal genes mediated by plasmid R68.45 in Rhodopseudomonas sphaeroides. J Bacteriol 131: 526-532

    PubMed  CAS  Google Scholar 

  • Stocker JW, Taguchi AK, Murchison HA, Woodbury NW and Boxer SG (1992) Spectroscopic and redox properties of sym1 and (M)F195H: Rhodobacter capsulatus reaction center symmetry mutants which affect the initial electron donor. Biochemistry 31: 10356-10362

    Article  PubMed  CAS  Google Scholar 

  • Stowell MH, McPhillips TM, Rees DC, Soltis SM, Abresch E and Feher G (1997) Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276: 812-816

    Article  PubMed  CAS  Google Scholar 

  • Takahashi E and Wraight CA (1992) Proton and electron transfer in the acceptor quinone complex of Rhodobacter sphaeroides reaction centers: characterization of site-directed mutants of the two ionizable residues, GluL212 and AspL213, in the QB binding site. Biochemistry 31: 855-866

    Article  PubMed  CAS  Google Scholar 

  • Tang CK, Williams JC, Taguchi AK, Allen JP and Woodbury NW (1999) P+HA ? charge recombination reaction rate constant in Rhodobacter sphaeroides reaction centers is independent of the P/P+ midpoint potential. Biochemistry 38: 8794-8799

    Article  PubMed  CAS  Google Scholar 

  • Tiede DM, Kellogg E and Breton J (1987) Conformational changes following reduction of the bacteriopheophytin electron acceptor in reaction centers of Rhodopseudomonas viridis. Biochim Biophys Acta 892: 294-302

    Article  CAS  Google Scholar 

  • Visser JWM (1975) Photosynthetic reactions at low temperatures. Dissertation, Leiden University, Leiden, The Netherlands

    Google Scholar 

  • Volk M, Scheidel G, Ogrodnik A, Feick R and Michel-Beyerle ME (1991) High quantum yield of charge separation in reaction centers of Chloroflexus aurantiacus. Biochim Biophys Acta 1058: 217-224

    CAS  Google Scholar 

  • Williams JC, Steiner LA, Feher G and Simon MI (1984) Primary structure of the L subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 81: 7303-7307

    Article  PubMed  CAS  Google Scholar 

  • Williams JC, Alden RG, Murchison HA, Peloquin JM, Woodbury NW and Allen JP (1992a) Effects of mutations near the bacterio-chlorophylls in reaction centers from Rhodobacter sphaeroides. Biochemistry 31: 11029-11037

    Article  PubMed  CAS  Google Scholar 

  • Williams JC, Woodbury NW, Taguchi AKW, Peloquin JM, Murchison HA, Alden RG and Allen JP (1992b) Mutations that affect the donor midpoint potential in reaction centers from Rhodobacter sphaeroides. In: Breton J and Verméglio A (eds) The Photosynthetic Bacterial Reaction Center II, pp 25-31. Plenum Press, New York

    Google Scholar 

  • Woodbury NW and Allen JP (1995) The pathway, kinetics and thermodynamics of electron transfer in wild type and mutant reaction centers of purple nonsulfur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 527-557. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Yanish-Perron C, Viera J and Messing J (1985) Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13 mp18 and pUC19 vectors. Gene 33: 103-119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boer, A.L., Neerken, S., de Wijn, R. et al. B-branch electron transfer in reaction centers of Rhodobacter sphaeroides assessed with site-directed mutagenesis. Photosynthesis Research 71, 221–239 (2002). https://doi.org/10.1023/A:1015533126685

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015533126685

Navigation