Skip to main content
Log in

Towards unlimited colors for fluorescence in-situ hybridization (FISH)

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

We describe a FISH protocol that allows rehybridization of complex DNA probes up to four times to the same specimen. This strategy, which we termed ReFISH, opens a wide range of new applications to conventional band pass filter epifluorescence microscopy. These include M-FISH karyotyping and cross-species color banding that emulate multiplex probe sets labeled with up to 12 fluorochromes in sequential hybridizations to the same specimen. We designed a human 24-color karyotyping probe set in combination with a 29-color cross-species color banding probe set using gibbon painting probes. Applying the ReFISH principle, 53 painting probes on individual metaphases were discriminated. This allowed simultaneous screening for inter- and intrachromosomal rearrangements on normal human diploid cells, a HeLa derived cell line, and highly rearranged gibbon chromosomes. Furthermore, the present ReFISH experiments successfully combine 24-color FISH with laser scanning confocal microscopy to study the 3D organization of all 46 human chromosome territories in individual interphase cell nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chudoba I, Plesch A, Lorch T, Lemke J, Claussen U, Senger G (1999) High resolution multicolor-banding: a new technique for recned FISHanalysis of human chromosomes. Cytogenet Cell Genet 84: 156–160.

    PubMed  Google Scholar 

  • Epstein L, DeVries S, Waldman FM (1995) Reutilization of previously hybridized slides for fluorescence in situ hybridization. Cytometry 21: 378–381.

    PubMed  Google Scholar 

  • Ferguson-Smith MA (1997) Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications. Eur J Hum Genet 5: 253–265.

    PubMed  Google Scholar 

  • Henegariu O, Heerema NA, Bray-Ward P, Ward DC (1999) Colour-changing karyotyping: an alternative to M-FISH/SKY. Nat Genet 23: 263–264.

    PubMed  Google Scholar 

  • Heslop-Harrison JS, Harrison GE, Leitch IJ (1992) Reprobing of DNA: DNA in situ hybridization preparations. Trends Genet 11: 372–373.

    Google Scholar 

  • Jauch A, Wienberg J, Stanyon R et al. (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89: 8611–8615.

    PubMed  Google Scholar 

  • Koehler U, Arnold N, Wienberg J, Tofanelli S, Stanyon R (1995a) Genomic reorganization and disrupted chromosomal synteny in the siamang (Hylobates syndactylus) revealed by Luorescence in situ hybridization. Am J Phys Anthropol 97: 37–47.

    PubMed  Google Scholar 

  • Koehler U, Bigoni F, Wienberg J, Stanyon R (1995b) Genomic reorganization in the concolor gibbon (Hylobates concolor) revealed by chromosome painting. Genomics 30: 287–292.

    PubMed  Google Scholar 

  • Lavappa KS (1978) Survey of ATCC stocks of human cell lines for HeLa contamination. In Vitro 14: 469–475.

    PubMed  Google Scholar 

  • Luke S, Shepelsky M (1998) FISH: recent advances and diagnostic aspects. Cell Vis 5: 49–53.

    PubMed  Google Scholar 

  • Macville M, Schröck, E, Padilla-Nash H et al. (1999) Comprehensive and decnitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res 59: 141–150.

    PubMed  Google Scholar 

  • Müller S, Wienberg J (2001) 'Bar-coding’ primate chromosomes: molecular cytogenetic screening for the ancestral hominoid karyotype. Hum Genet 109: 85–94.

    PubMed  Google Scholar 

  • Müller S, Rocchi M, Ferguson-Smith MA, Wienberg J (1997) Toward a multicolor chromosome bar code for the entire human karyotype by Luorescence in situ hybridization. Hum Genet 100: 271–278.

    PubMed  Google Scholar 

  • Müller S, O'Brien PC, Ferguson-Smith MA, Wienberg J (1998) Cross-species colour segmenting: a novel tool in human karyotype analysis. Cytometry 33: 445–452.

    PubMed  Google Scholar 

  • Nie W, Rens W, Wang J, Yang F (2001) Conserved chromosome segments in Hylobates hoolock revealed by human and H. leucogenys paint probes. Cytogenet Cell Genet 92: 248–253.

    PubMed  Google Scholar 

  • Raap AK (1998) Advances in Luorescence in situ hybridization. Mutat Res 400: 287–298.

    PubMed  Google Scholar 

  • Ried T, Baldini A, Rand TC, Ward DC (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial Luorescence and digital imagingmicroscopy. Proc Natl Acad Sci USA 89: 1388–1392.

    Google Scholar 

  • Ried T, Schröck E, Ning Y, Wienberg J (1998) Chromosome painting: a useful art. Hum Mol Genet 7: 1619–1626.

    PubMed  Google Scholar 

  • Roberts I, Wienberg J, Nacheva E, Grace C, Griffin D, Coleman N (1999) Novel method for the production of multiple colour chromosome paints for use in karyotyping by Luorescence in situ hybridisation. Genes Chromosomes Cancer 25: 241–250.

    PubMed  Google Scholar 

  • Saracoglu K, Brown J, Kearney L et al. (2001) New concepts to improve resolution and sensitivity of molecular cytogenetic diagnostics by multicolor fluorescence in situ hybridization. Cytometry 44: 7–15.

    PubMed  Google Scholar 

  • Schröck E, du Manoir S, Veldman T et al. (1996) Multicolor spectral karyotyping of human chromosomes [see comments]. Science 273: 494–497.

    PubMed  Google Scholar 

  • Solovei I, Walter J, Cremer M, Habermann F, Schermelleh L, Cremer, T (2002) FISH on three-dimensionally preserved nuclei. In: Squire J, Beatty B, Mai S (eds) FISH:A Practical Approach. Oxford: Oxford University Press (in press).

    Google Scholar 

  • Spathas DH, Divane A, Maniatis GM, Ferguson-Smith ME, Ferguson-Smith MA (1994) Prenatal detection of trisomy 21 in uncultured amniocytes by fluorescence in situ hybridization: a prospective study. Prenat Diagn 14: 1049–1054.

    PubMed  Google Scholar 

  • Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12: 368–375.

    PubMed  Google Scholar 

  • Tanke HJ, Wiegant J, van Gijlswijk RP et al. (1999) New strategy for multi-colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. Eur J Hum Genet 7: 2–11.

    PubMed  Google Scholar 

  • Telenius H, Pelmear AHP, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR ampliced Low-sorted chromosomes. Genes Chromosomes Cancer 4: 257–263.

    PubMed  Google Scholar 

  • Wang MR, Perissel B, Malet P (1995) Rehybridization on metaphases studied previously by FISH. An approach to analyze chromosome aberrations. Cancer Genet Cytogenet 85: 58–60.

    PubMed  Google Scholar 

  • Ye CJ, Lu W, Liu G et al. (2001) The combination of SKY and specicc loci detection with FISH or immunostaining. Cytogenet Cell Genet 93: 195–202.

    PubMed  Google Scholar 

  • Yu D, Yang F, Liu R (1997) [A comparative chromosome map between human and Hylobates hoolock built by chromosome painting.] Yi Chuan Xue Bao 24: 417–423.

    PubMed  Google Scholar 

  • Zhen DK, Wang JY, Falco VM, Weber W, Delli-Bovi L, Bianchi DW (1998) Poly-FISH: a technique of repeated hybridizations that improves cytogenetic analysis of fetal cells in maternal blood. Prenat Diagn 18: 1181–1185.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, S., Neusser, M. & Wienberg, J. Towards unlimited colors for fluorescence in-situ hybridization (FISH) . Chromosome Res 10, 223–232 (2002). https://doi.org/10.1023/A:1015296122470

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015296122470

Navigation