Skip to main content
Log in

Structure-based ligand design for flexible proteins: Application of new F-DycoBlock

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A method of structure-based ligand design – DycoBlock – has been proposed and tested by Liu et al.[1]. It was further improved by Zhu et al. and applied to design new selective inhibitors of cyclooxygenase 2 [2]. In the current work, we present a new methodology – F-DycoBlock that allows for the incorporation of receptor flexibility. During the designing procedure, both the receptor and molecular building blocks are subjected to the multiple-copy stochastic molecular dynamics (MCSMD) simulation [1], while the protein moves in the mean field of all copies. It is tested for two enzymes studied previously – cyclooxygenase 2 (COX-2) and human immunodeficiency type 1 (HIV-1) protease. To identify the applicability of F-DycoBlock, the binding protein structure was used as starting point to explore the conformational space around the bound state. This method can be easily extended to accommodate the flexibility in different degree. Four types of treatment of the receptor flexibility – all-atom restrained, backbone restrained, intramolecular hydrogen-bond restrained and active-site flexible – were tested with or without the grid approximation. Two inhibitors, SC-558 for COX-2 and L700417 for HIV-1 protease, are used in this testing study for comparison with previous results. The accuracy of recovery, binding energy, solvent accessible surface area (SASA) and positional root-mean-square (RMS) deviation are used as criteria. The results indicate that F-DycoBlock is a robust methodology for flexible drug design. It is particularly notable that the protein flexibility has been perfectly associated with each stage of drug design – search for the binding sites, dynamic assembly and optimization of candidate compounds. When all protein atoms were restrained, F-DycoBlock yielded higher accuracy of recovery than DycoBlock (100%). If backbone atoms were restrained, the same ratio of accuracy was achieved. Moreover, with the intramolecular hydrogen bonds restrained, reasonable conformational changes were observed for HIV-1 protease during the long-time MCSMD simulation and L700417 was reassembled at the active site. It makes it possible to study the receptor motion in the binding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, H.-Y., Duan, Z.-H., Luo, Q.-M. and Shi, Y.-Y., Proteins, 36 (1999) 462.

    Google Scholar 

  2. Zhu, J., Yu, H.B., Fan, H., Liu, H.-Y. and Shi, Y.-Y., J. Comput. Aid. Mol. Des., 15 (2001) 447.

    Google Scholar 

  3. Böhm, H.J., J. Comput. Aid. Mol. Des., 6 (1992) 61.

    Google Scholar 

  4. Eisen, M.B., Wiley, D.C., Karplus, M. and Hubbard, R.E., Proteins, 19 (1994) 199.

    Google Scholar 

  5. Pearlman, D.A. and Murcko, M.A., J. Med. Chem., 39 (1996) 1651.

    Google Scholar 

  6. Bryngelson, J.D. and Wolynes, P.G., J. Phys. Chem., 93 (1989) 6902.

    Google Scholar 

  7. Shakhnovitch, E.T. and Gutin, A.M., Protein Eng., 6 (1993) 793.

    Google Scholar 

  8. Boczko, E.M. and Brooks, C.L. III, Science, 269 (1995) 393.

  9. Dill, K.A. and Chan, H.S., Protein Sci., 4 (1995) 561.

    Google Scholar 

  10. Karplus, M., Sali, A. and Shakhnovitch, E.T., Nature (London), 373 (1995) 664.

    Google Scholar 

  11. Onuchic, J.N., Wolynes, P.G., Luthey-Schulten, Z. and Socci, N.D., Proc. Natl. Acad. Sci. USA, 92 (1995) 3626.

    Google Scholar 

  12. Wolynes, P.G., Onuchic, J.N. and Thirumalai, D., Science, 267 (1995) 1619.

    Google Scholar 

  13. Dill, K.A. and Chan, H.S., Nature Struct. Biol., 4 (1997) 10.

    Google Scholar 

  14. Karplus, M., Folding Des., 2 (1997) S69.

    Google Scholar 

  15. Lazaridis, T. and Karplus, M., Science, 278 (1997) 1928.

    Google Scholar 

  16. Gruebele, M. and Wolynes, P.G., Nature Struct. Biol., 5 (1998) 662.

    Google Scholar 

  17. Martinez, J.C., Pisabarro, M.T. and Serrano, L., Nature Struct. Biol., 5 (1998) 721.

    Google Scholar 

  18. Dill, K.A., Protein Sci., 6 (1999) 1166.

    Google Scholar 

  19. Tsai, C.-J., Kumar, S., Ma, B. and Nussinov, R., Protein Sci., 6 (1999) 1181.

    Google Scholar 

  20. Fischer, E., Ber. Dtsch. Chem. Ges., 27 (1894) 2985.

    Google Scholar 

  21. Koshland, D.E., Proc. Natl. Acad. Sci. USA, 44 (1958) 98.

    Google Scholar 

  22. Ma, B., Kumar, S., Tsai, C.-J. and Nussinov, R., Protein Eng., 12 (1999) 713.

    Google Scholar 

  23. Carlson, H.A. and McCammon, J.A., Mol. Pharmacol., 57 (2000) 213.

    Google Scholar 

  24. Gschwend, D.A., Good, A.C. and Kuntz, I.D., J. Mol. Rec., 9 (1996) 175.

    Google Scholar 

  25. Schnecke, V., Swanson, C.A., Getzoff, E.D., Tainer, J.A. and Kuhn, L.A., Proteins, 33 (1998) 74.

    Google Scholar 

  26. Leach, A.R., J. Mol. Biol., 235 (1994) 345.

    Google Scholar 

  27. Lamb, M.L. and Jorgensen, W.L., Curr. Opin. Chem. Biol., 1 (1997) 449.

    Google Scholar 

  28. Miranker, A. and Karplus, M., Proteins, 11 (1991) 29.

    Google Scholar 

  29. Stultz, C.M. and Karplus, M., Proteins, 37 (1999) 512.

    Google Scholar 

  30. Stultz, C.M. and Karplus, M., Proteins, 40 (2000) 258.

    Google Scholar 

  31. Elber, R. and Karplus, M., J. Am. Chem. Soc., 112 (1990) 9161.

    Google Scholar 

  32. Roitberg, A. and Elber, R., J. Chem. Phys., 95 (1991) 9277.

    Google Scholar 

  33. Zheng, Q., Rosenfeld, R. and Kyle. D.J., J. Chem. Phys., 99 (1993) 8892.

    Google Scholar 

  34. Zheng, W.-M. and Zheng, Q., J. Chem. Phys., 106 (1997) 1191.

    Google Scholar 

  35. Koehl, P. and Delarue, M., Curr. Opin. Struct. Biol., 6 (1996) 222.

    Google Scholar 

  36. Zheng, Q. and Kyle, D.J., Proteins, 19 (1994) 324.

    Google Scholar 

  37. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S. and Pople, J.A., Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA, 1998.

  38. van Gunsteren, W.F., Billeter, S.R., Eising, A.A., Hunenberger, P.H., Kruger, P., Mark, A.E., Scott, W.R.P. and Tironi, I.G., Biomolecular simulation: the GROMOS96 manual and user guide. University of Groningen, the Netherlands, ETH Zurich, Switzerland: Biomos, 1996.

    Google Scholar 

  39. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Dinola, A. and Haak, J.R., J. Chem. Phys., 81 (1984) 3684.

    Google Scholar 

  40. Ryckaert, J.P., Ciccotti, G. and Berendsen, H.J.C., J. Comput. Phys., 23 (1977) 327.

    Google Scholar 

  41. Stouten, P.F.W., Frommel, C., NaKamura, H. and Sander, C., Mol. Simul., 10 (1993) 97.

    Google Scholar 

  42. DeWitt, D.L., El-Harith, E.A., Kraemer, S.A., Andrews, M.J., Yao, E.F., Armstrong, R.L. and Smith, W.L., J. Biol. Chem., 265 (1990) 5192.

    Google Scholar 

  43. Seibert, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., Perkins, W., Lee, L. and Isakson, P., Proc. Natl. Acad. Sci. USA, 91 (1994) 12013.

    Google Scholar 

  44. Masferrer, J.L., Zweifel, B.S., Manning, P.T., Hauser, S.D., Leahy, K.M., Smith, W.G.

  45. Isakson, P.C. and Seibert, K., Proc. Natl. Acad. Sci. USA, 91 (1994) 3228.

  46. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F. and Hermans, J., In: Intermolecular Forces, D. Reidel Publ. Co., Dordrecht, pp. 331–342.

  47. Totrov, M. and Abagyan, R., Proteins, Suppl. 1 (1997) 215.

  48. Schaffer, L. and Verkhivker, G.M., Proteins, 33 (1998) 295.

    Google Scholar 

  49. Straub, J.E. and Karplus. M., J. Chem. Phys., 94 (1991) 6737.

    Google Scholar 

  50. Zacharias, M., Luty, B.A., Davis, M.E. and McCammon, J.A., J. Mol. Biol., 238 (1994) 455.

    Google Scholar 

  51. Huber, T., Torda, A.E. and van Gunsteren, W.F., Biopolymers, 39 (1996) 103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Fan, H., Liu, H. et al. Structure-based ligand design for flexible proteins: Application of new F-DycoBlock. J Comput Aided Mol Des 15, 979–996 (2001). https://doi.org/10.1023/A:1014817911249

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014817911249

Navigation