Skip to main content
Log in

Genetic variability of the postharvest pathogen Gilbertella persicaria: identification of randomly amplified polymorphic DNA (RAPD) markers correlating with (+) and (–) mating types

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Random amplified polymorphic DNA (RAPD) and isoenzyme polymorphisms among 16 isolates of the postharvest pathogen Gilbertella persicaria were examined. Six different 10-bp primers were used to determine the extent of intraspecific genetic variability. Nine composite amplification types were identified. RAPD markers were obtained which correlated with the mating types of the G. persicaria isolates. The variability of the isoenzyme patterns was very low and no correlation was found between the isoenzyme markers and the mating abilities. When 80 single carbon substrates were tested in utilization assays, most of them were utilized uniformly by the 16 G. persicaria strains. However, some compounds elicited differences between the isolates representing the two mating types. β-Alanine (0.2%) has little effect on the germination of the sporangiospores of the (+) isolates, but inhibited the germination of (–) sporangiospores. Glycerol-1-monoacetate supported the growth of both mating types, but at concentrations higher than 4% this was accompanied with a compact (colonial) growth for plus mating type isolates only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beauchamp C & Fridovich J (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamid gels. Anal. Biochem. 44: 276-287

    Google Scholar 

  • Benny GL (1991) Gilbertellaceae, a new family of the Mucorales (Zygomycetes). Mycologia 83(2): 150-157

    Google Scholar 

  • Brewer GJ (1970) An Introduction to Isoenzyme Techniques. Academic Press, New York

  • Burmester A & Wöstemeyer J (1994) Variability in genome organization of the zygomycete Parasitella parasitica. Curr. Genet. 26: 456-460

    Google Scholar 

  • Davis BJ (1964) Disc electrophoresis-II. Method and application to human serum proteins. Ann. NY Acad. Sci. 121: 404-423

    Google Scholar 

  • Díaz-Mínguez JM, López-Matas MA & Eslava AP (1999) Complementary mating types of Mucor circinelloides show electrophoretic karyotype heterogenity. Curr. Genet. 36: 383-389

    Google Scholar 

  • Ginting C, Zehr EI & Westcott SW III (1996) Inoculum sources and characterisation of isolates of Gilbertella persicaria from peach fruit in South Carolina. Plant. Dis. 80: 1129-1134

    Google Scholar 

  • Hänfler J, Tepe H, Weigel C, Kruft V, Lurz R & Wöstemeyer J (1992) Circular extrachromosomal DNA codes for a surface protein in the (+) mating-type of the zygomycete Absidia glauca. Curr. Genet. 22: 319-325

    Google Scholar 

  • Harris H & Hopkinson DA (1976) Handbook of Isoenzyme Analysis in Human Genetics. Elsevier North Holland, Amsterdam

    Google Scholar 

  • Hesseltine CW (1960) Gilbertella gen. nov. (Mucorales). Bull.Torrey Bot. Club 87: 21-30

    Google Scholar 

  • Kayser T & Wöstemeyer J (1991) Electrophoretic karyotype of the zygomycete Absidia glauca: evidence for differences between mating types. Curr. Genet. 19: 279-284

    Google Scholar 

  • Leach J, Finkelstein DB & Rambosek JA (1986) Rapid miniprep of DNA from filamentous fungi. Fungal Genet. Newslett. 33: 32-33

    Google Scholar 

  • Mehrotra BS & Mehrotra MD (1963) A morphological and physiological study of Gilbertella in India. Mycologia 55: 582-594

    Google Scholar 

  • Mehrotra MD 1963. Fruit rot of tomato caused by Gilbertella persicaria var. indica. Sydowia 17: 124-125

    Google Scholar 

  • Michailides TJ, Guo L-Y & Morgan DP (1997) Factors affecting zygosporogenesis in Mucor piriformis and Gilbertella persicaria. Mycologia 89(4): 603-609

    Google Scholar 

  • Mulvey M & Vrijenhoek RC (1981) Genetic variation among laboratory strains of the planorbid snail Biomphalaria glabrata. Biochem. Genet. 19: 1169-1182

    Google Scholar 

  • O'Donnell KL, Ellis JJ, Hesseltine CW & Hooper GR (1977) Zygosporogenesis in Gilbertella persicaria. Can. J. Bot. 55: 662-675

    Google Scholar 

  • Papp T, Vágvölgyi Cs, Kerényi Z, Nagy Á & Michailides TJ (1997) DNA amplification polymorphisms of the postharvest pathogen Mucor piriformis. Antone van Leeuwenhoek 72: 167-173

    Google Scholar 

  • Podani J (1993) SYN-TAX-pc, Computer programs for multivariate data analysis in ecology and systematics. Version 5.0. User's Guide. Scientia Publishing, Budapest, Hungary.

    Google Scholar 

  • Sneath PHA & Sokal RR (1973) Numerical Taxonomy. W.H. Freeman, San Francisco, CA

    Google Scholar 

  • Vágvölgyi Cs, Magyar K, Papp T, Palágyi Zs, Ferenczy L & Nagy Á (1996a) Value of substrate utilization data for characterization of Mucor isolates. Can. J. Microbiol. 42: 613-615

    Google Scholar 

  • Vágvölgyi Cs, Papp T, Palágyi Zs & Michailides TJ (1996b). Isozyme variation among isolates of Mucor piriformis. Mycologia 88: 602-607

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA & Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535

    Google Scholar 

  • Woodbury WA Spencer K & Stanmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal. Biochem. 44: 301-305

    Google Scholar 

  • Wöstemeyer J (1985) Strain-dependent variation in ribosomal DNA arrangement in Absidia glauca. Eur. J. Biochem. 146: 443-448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Vágvölgyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papp, T., Vastag, M., Michailides, T.J. et al. Genetic variability of the postharvest pathogen Gilbertella persicaria: identification of randomly amplified polymorphic DNA (RAPD) markers correlating with (+) and (–) mating types. Antonie Van Leeuwenhoek 80, 301–309 (2001). https://doi.org/10.1023/A:1013066024258

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013066024258

Navigation