Skip to main content
Log in

Formulation of PEG-based hydrogels affects tissue-engineered cartilage construct characteristics

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The limited supply of cartilage tissue with appropriate sizes and shapes needed for reconstruction and repair has stimulated research in the area of hydrogels as scaffolds for cartilage tissue engineering. In this study we demonstrate that poly(ethylene glycol) (PEG)-based semi-interpenetrating (sIPN) network hydrogels, made with a crosslinkable poly(ethylene glycol)-dimethacrylate (PEGDM) component and a non-crosslinkable interpenetration poly(ethylene oxide) (PEO) component, and seeded with chondrocytes support cartilage construct growth having nominal thicknesses of 6 mm and relatively uniform safranin-O stained matrix when cultured statically, unlike constructs grown with prefabricated macroporous scaffolds. Even though changing the molecular weight of the PEO from 100 to 20 kDa reduces the viscosity of the precursor polymer solution, we have demonstrated that it does not appear to affect the histological or biochemical characteristics of cartilaginous constructs. Extracellular matrix (ECM) accumulation and the spatial uniformity of the ECM deposited by the embedded chondrocytes decreased, and hydrogel compressive properties increased, as the ratio of the PEGDM:PEO in the hydrogel formulation increased (from 30:70 to 100:0 PEGDM:PEO). Total collagen and glycosaminoglycan contents per dry weight were highest using the 30:70 PEGDM:PEO formulation (24.4±3.5% and 7.1±0.9%, respectively). The highest equilibrium compressive modulus was obtained using the 100:0 PEGDM:PEO formulation (0.32±0.07 MPa), which is similar to the compressive modulus of native articular cartilage. These results suggest that the versatility of PEG-based sIPN hydrogels makes them an attractive scaffold for tissue engineering of cartilage.

© 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Buckwalter and H. J. Mankin, Arthritis Rheum. 41 (1998) 1331-1342.

    Google Scholar 

  2. L. J. Soslowsky, G. A. Ateshian and V. C. Mow, in “Biomechanics of Diarthrodial Joints”, edited by V. C. Mow, A. Ratcliffe and S. L. Woo (Springer-Verlag, New York, 1990) pp. 243-268.

    Google Scholar 

  3. G. A. Ateshian and L. J. Soslowsky, in “Basic Orthopaedic Biomechanics”, edited by V. C. Mow and W. C. Hayes (Lippincott-Raven, Philadelphia, 1997) pp. 253-273.

    Google Scholar 

  4. L. E. Freed, G. Vunjak-Novakovic and R. Langer, J. Cell. Biochem. 51 (1993) 257-264.

    Google Scholar 

  5. L. E. Freed, J. C. Marquis, G. Vunjak-Novakovic, J. Emmanual and R. Langer, Biotechnol. Bioeng. 43 (1994) 605-614.

    Google Scholar 

  6. J. Elisseeff, K. Anseth, D. Sims, W. Mcintosh, M. Randolph and R. Langer, Proc. Natl. Acad. Sci. 96 (1999) 3104-3107.

    Google Scholar 

  7. A. T. Metters, K. S. Anseth and C. N. Bowman, Biomed. Sci. Instrum. 35 (1999) 33-38.

    Google Scholar 

  8. A. B. Saim, Y. Cao, Y. Weng, C. N. Chang, M. A. Vacanti, C. A. Vacanti and R. D. Eavey, Laryngoscope 110 (2000) 1694-1697.

    Google Scholar 

  9. P. H. Corkhill, A. S. Trevett and B. J. Tighe, Proc. Inst. Mech. Eng. [H] 204 (1990) 147-155.

    Google Scholar 

  10. J. Clowacki, E. Trepman and J. Folkman, Proc. Soc. Exp. Biol. Med. 172 (1983) 93-98.

    Google Scholar 

  11. Y. Hiraizumi, E. E. Transfeldt, E. Fujimaki and M. Nambu, Spine 20 (1995) 2272-2277.

    Google Scholar 

  12. H. J. Hauselmann, M. B. Aydelotte, B. L. Schumacher, K. E. Kuettner, S. H. Gitelis and E. J. Thonar, Matrix 12 (1992) 116-129.

    Google Scholar 

  13. M. Demoor-Fossard, M. Boittin, F. Redini and J. P. Pujol, Mol. Cell Biochem. 199 (1999) 69-80.

    Google Scholar 

  14. M. D. Buschmann, Y. A. Gluzband, A. J. Grodzinsky and E. B. Hunziker, J. Cell Sci. 108 (1995) 1497-1508.

    Google Scholar 

  15. K. T. Paige, L. G. Cima, M. J. Yaremchuk, B. L. Schloo, J. P. Vacanti and C. A. Vacanti, Plast. Reconstr. Surg. 97 (1996) 168-178.

    Google Scholar 

  16. J. L. Van Susante, P. Buma, G. J. Van Osch, D. Versleyen, P. M. Van Der Kraan, W. B. Van Der Berg and G. N. Homminga, Acta Orthop. Scand. 66 (1995) 549-556.

    Google Scholar 

  17. P. Bulpitt and D. Aeschlimann, J. Biomed. Mater. Res. 47 (1999) 152-169.

    Google Scholar 

  18. G. M. Cruise, D. S. Scharp and J. A. Hubbell, Biomaterials 19 (1998) 1287-1294.

    Google Scholar 

  19. Y. Inada, M. Furukawa, H. Sasaki, Y. Kodera, M. Hiroto, H. Nishimura and A. Matsushima, Trends Biotechnol. 13 (1995) 86-91.

    Google Scholar 

  20. J. Eelisseeff, W. McINTOSH, K. ANSETH, S. RILEY, P. RAGAN and R. Langer, J. Biomed. Mater. Res. 51 (2000) 164-171.

    Google Scholar 

  21. J. Elisseef, K. Anseth, D. Sims, W. McINTOSH, M. RANDOLPH, M. YAREMCHUK and R. Langer, Plast. Reconstr. Surg. 104 (1999) 1014-1022.

    Google Scholar 

  22. D. B. Brewer, Proc. Roy. Soc. Med. 44 (1951) 561.

    Google Scholar 

  23. R. E. Schreiber and A. Ratcliffe, in “Methods in Molecular Biology, vol. 139: Extracellular Matrix Protocols”, edited by C. Streuli and M. Grant, (Humana Press, Inc., Totowa, NJ, 2000).

    Google Scholar 

  24. Y. J. Kim, R. L. Sah, J. Y. Doong and A. J. Grodzinsky, Anal. Biochem. 174 (1988) 168-176.

    Google Scholar 

  25. R. W. Farndale, D. J. Buttle and A. J. Barrett, Biochim. Biophys. Acta 883 (1986) 173-177.

    Google Scholar 

  26. J. F. Woessner, Arch. Biochem. Biophys. 93 (1961) 440.

    Google Scholar 

  27. R. E. Schreiber, N. S. Dunkelman, G. Naughton and A. Ratcliffe, Ann. N.Y. Acad. Sci. 875 (1999) 398-404.

    Google Scholar 

  28. R. M. Schinagl, D. Gurskis, A. C. Chen and R. L. Sah, J. Orthop. Res. 15 (1997) 499-506.

    Google Scholar 

  29. M. K. Kwan, W. M. Lai and V. C. Mow, J. Biomech. 23 (1990) 145-155.

    Google Scholar 

  30. S. J. Bryant and K. Anseth, Biomaterials 22 (2001) 619-626.

    Google Scholar 

  31. L. E. Freed, A. P. Hollander, I. Martin, J. R. Barry, R. Langer and G. Vunjak-Novakovic, Exp. Cell Res. 240 (1998) 58-65.

    Google Scholar 

  32. P. J. Flory, “Principles of polymer chemistry” (Cornell University Press Ithaca, NY, 1953).

    Google Scholar 

  33. E. W. Merrill, K. A. Dennison and C. Sung, Biomaterials 14 (1993) 1117-1126.

    Google Scholar 

  34. T. Canal and N. A. Peppas, J. Biomed. Mater. Res. 23 (1989) 1183-1193.

    Google Scholar 

  35. K. S. Anseth, C. N. Bowman and L. Brannon-Peppas, Biomaterials 17 (1996) 1647-1657.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Riley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riley, S.L., Dutt, S., de la Torre, R. et al. Formulation of PEG-based hydrogels affects tissue-engineered cartilage construct characteristics. Journal of Materials Science: Materials in Medicine 12, 983–990 (2001). https://doi.org/10.1023/A:1012817317296

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012817317296

Keywords

Navigation