Skip to main content
Log in

Allelic loss of chromosome 3p24 correlates with tumor progression rather than with retinoic acid receptor β2 expression in breast carcinoma

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

A tumor suppressor gene, retinoic acid receptor (RAR) β2, has been mapped to chromosome 3p24, a region where loss of heterozygosity (LOH) has been observed commonly in carcinomas of various tumor tissues. RAR β2 expression is reduced or lost in many malignant tumors including breast cancer, however, whether LOH accounts for the loss of expression of RAR β2 in breast cancer is unknown. We, therefore, assessed LOH on chromosome band 3p24 to correlate it with RAR β2 expression and other established prognostic parameters in 52 breast carcinomas. Based on three microsatellites, D3S 1283, D3S 1293 and D3S 1286, all of the tumors were informative, of these, 12 (23%) exhibited LOH. RAR β2 expression was lost in 42% (19/45) of these samples. We found that LOH on chromosome band 3p24 was not correlated with loss of RAR β2, but correlated with higher histological grade, p53-positivity, and loss of estrogen and progesterone receptors. Our findings suggest that LOH of the RAR β2 gene does not account for the frequent loss of RAR β2 expression in breast cancer but the genomic structural alteration at or close to the RAR β2 gene locus are likely to be associated with tumor progression and/or loss of hormonal dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knudson AG: Antioncogenes and human cancer. Proc Natl Acad Sci USA 90: 10914-10921, 1993

    Google Scholar 

  2. Chen LC, Kurisu W, Ljung BM, Goldman ES, Moore II D, Smith HS: Heterogeneity for allelic loss in human breast cancer. J Natl Cancer Inst 84: 506-510, 1992

    Google Scholar 

  3. Yokota T, Yoshimoto M, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y, Emi M: Localization of a tumor suppressor gene associated with the progression of human breast carcinoma within a 1-cM interval of 8p22-p23. 1. Cancer 85: 447-451, 1999

    Google Scholar 

  4. Iida A, Yoshimoto M, Kasumi F, Nakamura Y, Emi M: Localization of breast cancer tumor-suppressor gene to a 3-cM interval within chromosomal region 16q22. Br J Cancer 75: 264-267, 1997

    Google Scholar 

  5. Kawaki J, Miyazaki M, Ito H, Nakagawa K, Shimizu H, Yoshidome H, Uzawa K, Tanzawa H, Nakajima N: Allelic loss in human intrahepatic cholangiocarcinoma: correlation between chromosome 8p22 and tumor progression. Int J Cancer 88: 228-231, 2000

    Google Scholar 

  6. Picard E, Seguin C, Monhoven N, Rochette-Egly C, Siat J, Borrelly J, Martinet Y, Martinet N, Vignaud JM: Expression of retinoid receptor genes and proteins in non-small-lung cancer. J Natl Cancer Inst 91: 1059-1066, 1999

    Google Scholar 

  7. Qiu H, Lotan R, Lippman SM, Xu XC: Lack of correlation between expression of retinoic acid receptor-beta and loss of heterozygosity on chromosome band 3p24 in esophageal cancer. Genes Chromo Cancer 28: 196-202, 2000

    Google Scholar 

  8. Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS: Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science (Washington DC) 274: 2057-2059, 1996

    Google Scholar 

  9. Xu X-C, Liu X, Tahara E, Lippman SM, Lotan R: Expression and up-regulation of retinoic acid receptor-? is associated with retinoid sensitivity and colony formation in esophageal cancer cell lines. Cancer Res 59: 2477-2483, 1999

    Google Scholar 

  10. Xu X-C, Sneige N, Liu X, Nandagiri R, Lee JJ, Lukmanji F, Hortobagyi G, Lippman SM, Dhingra K, Lotan R: Progressive decrease in nuclear retinoic acid receptor ? messenger RNA level during breast carcinogenesis. Cancer Res 57: 4992-4996, 1997

    Google Scholar 

  11. Shan L, Yang Q, Nakamura M, Nakamura Y, Mori I, Sakurai T, Kakudo K: Active allele loss of the androgen receptor gene contributes to loss of androgen receptor expression in female breast cancers. Biochem Biophys Res Commun 275: 488-492, 2000

    Google Scholar 

  12. Gyapay G, Morissette J, Vignal A, Dib C, Fizames C, Millasseau P, Marc S, Bernardi G, Lathrop M, Weissenbach J: The 1993-1994 genethon human genetic linkage map. Nat Genet 7: 246-339, 1994

    Google Scholar 

  13. WHO: Histological Typing of Breast Tumors. 2nd edn, International Histological Classification of Tumors, No. 2., World Health Organization, Geneva, 1981

    Google Scholar 

  14. Elston CW, Ellis IO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19: 403-410, 1991

    Google Scholar 

  15. Sommer KM, Chen LI, Treuting PM, Smith LT, Swisshelm K: Elevated retinoic acid receptor ?4 protein in human breast tumor cells with nuclear and cytoplasmic localization. Proc Natl Sci USA 96: 8651-8656, 1999

    Google Scholar 

  16. Yang Q, Shan L, Goro Yoshimura, Taniguchi E, Suzuma T, Nakamura Y, Nakamura M, Utsunomiya H, Tang W, Sakurai T, Kakudo K: Thymidine phosphorylase expression in invasive breast carcinoma: correlations with in vitro chemosensitivity to 5-fluorouracil. Anticancer Res 19: 5543-5546, 1999

    Google Scholar 

  17. Yang Q, Sakurai T, Yoshimura G, Shan L, Suzuma T, Tamaki T, Nakamura Y, Nakamura M, Kakudo K: Expression of Bcl-2 but not Bax or p53 correlates with in vitro resistance to a series of anticancer drugs in breast carcinoma. Breast Cancer Res Treat 61: 211-216, 2000

    Google Scholar 

  18. Maestro R, Gasparotto D, Vukosavljevic T, Barzan L, Sulfaro S, Boiocchi M: Three discrete regions of deletion at 3p in head and neck cancers. Cancer Res 53: 5775-5779, 1993

    Google Scholar 

  19. Roz L, Wu CL, Porter S, Scully C, Speight P, Read A, Sloan P, Thakker N: Allelic imbalance on chromosome 3p in oral dysplastic lesions: an early event in oral carcinogenesis. Cancer Res 56: 1228-1231, 1996

    Google Scholar 

  20. Deng L, Jing N, Tan G, Zhou M, Zhan F, Xie Y, Cao L, Li G: A common region of allelic loss on chromosome region 3p25.3-26.3 in nasopharyngeal carcinoma. Genes Chromo Cancer 23: 21-25, 1998

    Google Scholar 

  21. Lounis H, Mes-Masson AM, Dion F, Bradley WE, Seymour RJ, Provencher D, Tonin PN: Mapping of chromosome 3p deletions in human epithelial ovarian tumors. Oncogene 17: 2359-2365, 1998

    Google Scholar 

  22. Ejeskar K, Aburatani H, Abrahamsson J, Kogner P, Martinsson T: Loss of heterozygosity of 3p markers in neuroblastoma tumours implicate a tumour-suppressor locus distal to the FHIT gene. Br J Cancer 77: 1787-1791, 1998

    Google Scholar 

  23. Dahiya R, McCarville J, Hu W, Lee C, Chui RM, Kaur G, Deng G: Chromosome 3p24-26 and 3p22-12 loss in human prostatic adenocarcinoma. Int J Cancer 71: 20-25, 1997

    Google Scholar 

  24. Houle B, Rochette-Egly C, Bradley WE: Tumor-suppressive effect of the retinoic acid receptor ? in human epidermoid lung cancer cells. Proc Natl Acad Sci USA 90: 985-989, 1993

    Google Scholar 

  25. Liu Y, Lee MO, Wang HG, Li Y, Hashimoto Y, Klaus M, Reed JC, Zhang X: Retinoic acid receptor ? mediates the growthinhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol Cell Biol 16: 1138-1149, 1996

    Google Scholar 

  26. Berard J, Laboune F, Mukuna M, Masse S, Kothary R, Bradley WE: Lung tumors in mice expressing an antisense RAR ?2 transgene. FASEB J 10: 1091-1097, 1996

    Google Scholar 

  27. Seewaldt VL, Johnson BS, Parker MB, Collins SJ, Swisshelm K: Expression of retinoic acid receptor beta mediates retinoic acid-induced growth arrest and apoptosis in breast cancer cells. Cell Growth Differ 6: 1077-1088, 1995

    Google Scholar 

  28. Seewaldt VL, Caldwell LE, Johnson BS, Swisshelm K, Collins SJ, Tsai S: Inhibition of retinoic acid receptor function in normal human mammary epithelial cells results in increased cellular proliferation and inhibits the formation of a polarized epithelium in vitro. Exp Cell Res 236: 16-28, 1997

    Google Scholar 

  29. Lotan R, Xu XC, Lippman SM, Ro JY, Lee JS, Lee JJ, Hong WK: Suppression of retinoic acid receptor ? in premalignant oral lesions and its up-regulation by isotretinoin. N Engl JMed 332: 1405-1410, 1995

    Google Scholar 

  30. Swisshelm K, Ryan K, Lee X, Tsou HC, Peacocke M, Sager R: Down-regulation of retinoic acid receptor beta in mammary carcinoma cell lines and its up-regulation in senescing normal mammary epithelial cells. Cell Growth Differ 5: 133-141, 1994

    Google Scholar 

  31. Bix M, Locksley RM: Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells. Science 281: 1352-1354, 1998

    Google Scholar 

  32. Hollander GA, Zuklya S, Morel C, Mizoguchi E, Mobisson K, Simpson S, Terhorst C, Wishart W, Golan DE, Bhan AK, Burakoff SJ: Monoallelic expression of the interleukin-2 locus. Science 279: 2118-2121, 1998

    Google Scholar 

  33. Hu L, Crowe DL, Rheinwald JG, Chambon P, Gudas LJ: Abnormal expression of retinoic acid receptors and keratin 19 by human oral and epidermal squamous cell carcinoma cell lines. Cancer Res 51: 3972-3981, 1991

    Google Scholar 

  34. Widschwendter M, Berger J, Daxenbichler G, Muller-Holzner E, Widschwendter A, Mayr A, Marth C, Zeimet AG: Loss of retinoic acid receptor beta expression in breast cancer and morphologically normal adjacent tissue but not in the normal breast tissue distant from the cancer. Cancer Res 57: 4158-4161, 1997

    Google Scholar 

  35. Bartsch D, Boye B, Baust C, Zur Hausen H, Schwarz E: Retinoic acid-mediated repression of human papillomavirus 18 transcription and different ligand regulation of the retinoic acid receptor beta gene in non-tumorigenic and tumorigenic HeLa hybrid cells. EMBO J 11: 2283-2291, 1992

    Google Scholar 

  36. Sirchia SM, Ferguson AT, Sironi E, Subramanyan S, Orlandi R, Sukumar S, Sacchi N: Evidence of epigenetic changes affecting the chromatin state of the retinoic acid receptor ?2 promoter in breast cancer cells. Oncogene 19: 1556-1563, 2000

    Google Scholar 

  37. Widschwendter M, Berger J, Hermann M, Muller HM, Amberger A, Zeschnigk M, Widschwendter A, Abendstein B, Zeimet AG, Daxenbichler G, Marth C: Methylation and silencing of the retinoic acid receptor-?2 gene in breast cancer. J Natl Cancer Inst 92: 826-832, 2000

    Google Scholar 

  38. Wu Q, Li Y, Liu R, Agadir A, Lee MO, Liu Y, Zhang X: Modulation of retinoic acid sensitivity in lung cancer cells through dynamic balance of orphan receptors nur77 and COUP-TF and their heterodimerization. EMBO J 16: 1656-1669, 1997

    Google Scholar 

  39. Drabkin H, Kao FT, Hartz J, Hart I, Gazdar A, Weinberger C, Evans R, Gerber M: Localization of human ERBA2 to the 3p22-3p24.1 region of chromosome 3 and variable deletion in small cell lung cancer. Proc Natl Acad Sci USA 85: 9258-9262, 1988

    Google Scholar 

  40. Yu L, Hui-chen F, Chen Y, Zou R, Yan S, Chun-xiang L, Wuru W, Li P: Differential expression of RAB5A in human lung adenocarcinoma cells with different metastasis potential. Clin Exp Metastasis 17: 213-219, 1999

    Google Scholar 

  41. Horikawa I, Oshimura M, Barrett JC: Repression of the telomerase catalytic subunit by a gene on human chromosome 3 that induces cellular senescence. Mol Carcinog 22: 65-72, 1998

    Google Scholar 

  42. Cuthbert AP, Bond J, Trott DA, Gill S, Broni J, Marriott A, Khoudoli G, Parkinson EK, Cooper CS, Newbold RF: Telomerase repressor sequences on chromosome 3 and induction of permanent growth arrest in human breast cancer cells. J Natl Cancer Inst 91: 37-45, 1999

    Google Scholar 

  43. Harris JR, Morrow M, Norton L: Malignant tumors of the breast. In: DeVita VT, Hellman S, Rosenberg Sa (eds) Cancer Principles and Practice of Oncology. 5th edn, Vol 2, Lippincott-Noreu, Philadelphia, 1997, pp 1557-1616

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Yoshimura, G., Sakurai, T. et al. Allelic loss of chromosome 3p24 correlates with tumor progression rather than with retinoic acid receptor β2 expression in breast carcinoma. Breast Cancer Res Treat 70, 39–45 (2001). https://doi.org/10.1023/A:1012574305832

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012574305832

Navigation