Skip to main content
Log in

The Role of Bound Water on the Energetics of DNA Duplex Melting

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A combination of common and low-temperature differential scanning calorimetry (DSC) techniques was used to detect the thermodynamic parameters of heat denaturation and of ice-water phase transitions for native and denaturated DNA, at different low water contents. We suggest that the main contribution to the enthalpy of the process of the heat denaturation of DNA duplex (35±5 kJ/mol bp) is the enthalpy of disruption of the ordered water structure in the hydration shell of the double helix (26±1 kJ/mol bp). It is possible that this part of the energy composes the non-specific general contribution (70%) of the enthalpy of transition of all type of duplexes. For DNA in the condensed state the ratioα=ΔC pS ~2 is smaller than for DNA in diluted aqueous solutions (α≅2–4). This means that there are other sources for the large heat capacity change in diluted solutions of DNA – for example the hydrophobic effects and unstacking(unfolding) of single polynucleotide chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Mrevlishvili, G. Z. Razmadze, T. D. Mzinarashvili, N. O. Metreveli and G. R. Kakabadze, Thermochim. Acta, 274 (1996) 37.

    Article  CAS  Google Scholar 

  2. G. M. Mrevlishvili, N. O. Metreveli, G. Z. Razmadze, T. D. Mdzinarashvili, G. R. Kakabadze and M. M. Khvedelidze, Thermochim. Acta, 308 (1998) 41.

    Article  CAS  Google Scholar 

  3. A. Schoppe, H. J. Hinz, H. Rosemeyer and F. Sella, Eur. J. Bioch., 239 (1996) 33.

    Article  CAS  Google Scholar 

  4. T. V. Chalikian, J. Volker, G. E. Plum and K. J. Breslauer, PNAS USA, 96 (1999) 7853.

    Article  CAS  Google Scholar 

  5. G. M. Mrevlishvili, Sov. Phys. Usp. (American Institute of Physics, 1980), 22 (1979) 433.

    Google Scholar 

  6. G. M. Mrevlishvili, Thermochim. Acta, 308 (1998) 49.

    Article  CAS  Google Scholar 

  7. M. Feig and B. Montgomery Pettit, Biopolymers, 48 (1998) 199.

    Article  CAS  Google Scholar 

  8. B. Halle and V. Denisov, Biopolymers, 48 (1998) 210.

    Article  CAS  Google Scholar 

  9. M. Egli, V. Tereshko, M. Teplova, G. Minasov, A. Joachimiak, R. Sanishvili, Ch. Weeks, R. Miller, M. A. Maier, H. An, D. Cook and M. Manohoran, Biopolymers, 48 (1998) 234.

    Article  CAS  Google Scholar 

  10. T.V. Chalikian and K. J. Breslauer, Biopolymers, 48 (1998) 264.

    Article  CAS  Google Scholar 

  11. T. V. Chalikian, J. Volker, A. R. Srinivasan, W. K. Olson and K. J. Breslauer, Biopolymers, 50 (1999) 459.

    Article  CAS  Google Scholar 

  12. V. A. Bloomfield, D. M. Crothers and I. Tinoco, Jr., Nucleic Acids, Univ. Sci. Books, Sausalito, California, 2000 p. 475.

    Google Scholar 

  13. E. L. Andronikashvili, G. M. Mrevlishvili, G. Sh. Japaridze, V. M. Sokhadze and D. A. Tatishvili, J. Non-Equil. Thermodyn., 14 (1989) 23.

    Article  CAS  Google Scholar 

  14. P. L. Privalov and G. M. Mrevlishvili, Biophyzika (Russ.), 11 (1966) 1951.

    Google Scholar 

  15. G. M. Mrevlishvili and P. L. Privalov, in Water in Biological Systems; L. P. Kayushin Ed., Consultants Bureau, N.Y. 1969, p. 10.

    Google Scholar 

  16. G. M. Mrevlishvili, Low-temperature calorimetry of biological macromolecules, ‘Mecnierebaí’ publ. House, Tbilisi, Georgia 1984. (Translated in Japanese, Hokkaido Univ.Press, 1993).

    Google Scholar 

  17. G. M. Mrevlishvili, L. L. Buishvili, G. Sh. Japaridze and G. R. Kakabadze, Thermochim. Acta, 290 (1996) 65.

    Article  Google Scholar 

  18. I. Rouzina and V. Bloomfield, Biophysical J., 77 (1999) 3242.

    Article  CAS  Google Scholar 

  19. H. H. Klump, J. Volker, D. L. Maeder, Th. Nierman and C. H. M Sobolevski. Thermochim. Acta, 193 (1991) 391.

    Article  CAS  Google Scholar 

  20. V. Ya. Maleev, M. A. Semionov, A. I. Gasan and V. Kashpur, Biophyzika (Russ.), 38 (1993) 768.

    CAS  Google Scholar 

  21. B. I. Kankia and L. A. Marky, J. Phys. Chem. B., 103 (1999) 8759.

    Article  CAS  Google Scholar 

  22. J. Li and D. K. Ross, Nature, 365 (1993) 327.

    Article  CAS  Google Scholar 

  23. G. M. Mrevlishvili, G. Z. Razmadze, N. O. Metreveli and G. R. Kakabadze, Biophysics, 40 (1995) 263.

    Google Scholar 

  24. D. Voet, J. G. Voet and Ch. W. Pratt, Fundamentals of Biochemistry, John Wiley & Sons, Inc., N.Y.-Toronto 1999, p. 147.

  25. I. Jelesarov, C. Crane-Robinson and P. Privalov, J. Mol. Biol., 294 (1999 ) 981.

    Article  CAS  Google Scholar 

  26. G. Vernaver and K. J. Breslauer, Proc. Natl. Acad. Sci, USA, 30 (1991) 88, 3569.

    Google Scholar 

  27. G. I. Tsereteli, I. V. Sochava and G. M. Mrevlishvili, (unpublished data).

  28. G. I. Tsereteli and I. V. Smirnova, Biophyzika (Russ.), 34 (1989) 576; 35 (1990) 217.

    Google Scholar 

  29. S. Rudisser, A. Hallbrucker and E. Mayer, J. Phys. Chem., 100 (1996) 458.

    Article  Google Scholar 

  30. B. Lubas and T. Wilchock, Biopolymers, 10 (1971) 1267.

    Article  CAS  Google Scholar 

  31. M. J. Tunis and J. E. Hearst, Biopolymers, 6 (1968) 1345.

    Article  CAS  Google Scholar 

  32. A. A. Kornyshev and S. Leikin, Proc. Natl. Acad. Sci., 95 (1998) 13579.

    Article  CAS  Google Scholar 

  33. M. H. F. Wilkins, Cold Spring Harbor Symp. Quant. Biol., 21 (1956) 75.

    CAS  Google Scholar 

  34. R. Langridge, H. R. Wilson, C. W. Hooper, M. H. F. Wilkins and L. D. Hamilton, J. Mol. Biol., 2 (1960) 19.

    Article  CAS  Google Scholar 

  35. V. Bloomfield, Curr. Opin. Struct. Biol., 6 (1996) 334.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mrevlishvili, G.M., Carvalho, A.P.S.M.C., Ribeiro da Silva, M.A.V. et al. The Role of Bound Water on the Energetics of DNA Duplex Melting. Journal of Thermal Analysis and Calorimetry 66, 133–144 (2001). https://doi.org/10.1023/A:1012491716200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012491716200

Navigation