Skip to main content
Log in

Interaction of HIV-1 Reverse Transcriptase and T7 RNA Polymerase with Phosphonate Analogs of NTP and Inorganic Pyrophosphate

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

We have examined the interaction of human immunodeficiency virus reverse transcriptase (HIV RT) and T7 RNA polymerase (T7 RNAP) with modified nucleoside triphosphates and inorganic pyrophosphate (PPi) analogs containing nonhydrolyzable bisphosphonate groups. We have synthesized a number of derivatives of bisphosphonic acid having different aromatic and nonaromatic side substituents, as well as the NTP derivatives whose incorporation into the growing nucleotide chain during the polymerization reaction results in formation of bisphosphonates as leaving groups. The competitive character of inhibition of both enzymes has been revealed for all the compounds under study, and the inhibition constants have been estimated. One of PPianalogs containing a bulky aromatic substituent is characterized by similar inhibition constants for both T7 RNAP and RT. The universal character of this inhibitor can serve as evidence for a similar structure of the NPT-binding sites in the two polymerases. It has been shown that nonsubstituted methylenebisphosphate is a better leaving group than that containing additional methyl and hydroxyl groups. The NTP analogs are very weak inhibitors of T7 RNAP, whereas HIV RT is more sensitive to this type of compounds. On the basis of the X-ray crystallographic data on the T7 RNAP complex with a template and NTP, we have modeled the binding of some derivatives of bisphosphonic acid in the active center of the enzyme. The peculiarities observed in the model correlate well with the experimental data on inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beese, L.S., Friedman, J.M., and Steitz, T.A., Biochemistry, 1993, vol. 32, pp. 14095–14101.

    Google Scholar 

  2. Jacobo-Molina, A., Ding, J., Nanni, R.G., Clark, A.D., Jr., Lu, X., Tantillo, C., Williams, R.L., Kamer, G., Ferris, A.L., Clark, P., Hizi, A., Hughes, S.H., and Arnold, E., Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 6320–6324.

    Google Scholar 

  3. Cheethman, G.M.T., Jeruzalmi, D., and Steitz, T.A., Nature, 1999, vol. 399, pp. 80–83.

    Google Scholar 

  4. Cheethman, G.M.T. and Steitz, T.A., Science, 1999, vol. 286, pp. 2305–2310.

    Google Scholar 

  5. Kraevskii, A.A., Bioorganich. Khimiya, 2000, vol. 26, pp. 4–11.

    Google Scholar 

  6. Kati, W.M., Johnson, K.A., Jerva, L.F., and Anderson, K.S., J. Biol. Chem., 1992, vol. 267, pp. 25988–25997.

    Google Scholar 

  7. Allen, D.J., Darke, P.L., and Benkovic, S.J., Biochemistry, 1989, vol. 28, pp. 4601–4607.

    Google Scholar 

  8. Kerr, S.G. and Anderson, K.S., Biochemistry, 1997, vol. 36, pp. 14056–14063.

    Google Scholar 

  9. Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A., and Steitz, T.A., Science, 1992, vol. 256, pp. 1783–1790.

    Google Scholar 

  10. Rozovskaya, T.A., Rechinsky, V.O., Bibilashvili, R.S., Karpeisky, M.Ya., Tarusova, N.B., Khomutov, R.M., and Dixon, H.B.F., Biochem J., 1984, vol. 224, pp. 645–650.

    Google Scholar 

  11. Worms, K.-H. and Blum, H., Z. Anorg. Allg. Chem., 1979, vol. 457, pp. 203–208.

    Google Scholar 

  12. Worms, K.H., Blum, H., and Hempel, H.U., Z. Anorg. Allg. Chem., 1979, vol. 457, pp. 214–218.

    Google Scholar 

  13. McKenna, C.E., Khawli, L.A., Ahmad, Wan-Ya, Pham, Ph., and Bongartz, J.-P., Phosphorus and Sulfur, 1988, vol. 37, pp. 1–12.

    Google Scholar 

  14. Alfer'ev, I.S., Bobkov, S.Yu., and Kotlyarevskii, I.L., Izvestiya Akad. Nauk, Ser. Khim., 1987, no. 4, pp. 865–868.

    Google Scholar 

  15. Webster, D., Sparkes, M.J., and Dixon, H.B.F., Biochem. J., 1978, vol. 169, pp. 239–244.

    Google Scholar 

  16. Hoard, D.E. and Ott, D.G., JACS, 1965, vol. 87, pp. 1785–1788.

    Google Scholar 

  17. Rechinskii, V.O., Dragan, S.M., Kostyuk, D.A., Lyakhov, D.L., and Kochetkov, S.N., Mol. Biol., 1991, vol. 25, pp. 1588–1593.

    Google Scholar 

  18. Pokholok, D.K., Gudima, S.O., Memelova, L.V., Jr., Esipov, D.S., Rechinskii, V.O., and Kochetkov, S.N., Mol. Biol., 1996, vol. 61, pp. 107–113.

    Google Scholar 

  19. Gudima, S.O., Kostyuk, D.A., Grishchenko, O.I., Tunitskaya, V.L., Memelova, L.V., and Kochetkov, S.N., FEBS Lett., 1998, vol. 439, pp. 302–306.

    Google Scholar 

  20. Cramer, F., Schaller, H., and Staab, H.A., Chem. Ber., 1961, vol. 94, pp. 1612–1621.

    Google Scholar 

  21. Shaller, H., Staab, H.A., and Cramer, F., Chem. Ber., 1961, vol. 94, pp. 1621–1633.

    Google Scholar 

  22. Cramer, F. and Neunhoeffer, H, Chem. Ber., 1962, vol. 95, pp. 1664–1669.

    Google Scholar 

  23. Simon, E.S., Grabowski, S., and Whitesides, G.M., J. Org. Chem., 1990, vol. 50, pp. 1834–1841.

    Google Scholar 

  24. Maeda, A., Patel, D., and Hampton, A., Nucleic Acids Res., 1977, vol. 4, pp. 2843–2853.

    Google Scholar 

  25. Vogel, H.J. and Bridger, W.A., Biochemistry, 1982, vol. 21, pp. 394–401.

    Google Scholar 

  26. Wilson, J.E, Aulabaugh, A., Caligan, B., McPherson, S., Wakefield, J.K., Jablonski, S., Morrow, C.D., Reardon, J.E., and Furman, P.A., J. Biol. Chem., 1996, vol. 271, pp. 13656–13662.

    Google Scholar 

  27. Tunitskaya, V.L., Dragan, S.M., Kostyuk, D.A., Lyakhov, D.L., Memelova, L.V., Rechinskii, V.O., and Kochetkov, S.N., Biokhimiya, 1994, vol. 59, pp. 494–502.

    Google Scholar 

  28. Valverde-Garduno, V., Gariglio, P., and Gutierrez, L., J. Mol. Evol., 1998, vol. 47, pp. 73–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreeva, O.I., Efimtseva, E.V., Padyukova, N.S. et al. Interaction of HIV-1 Reverse Transcriptase and T7 RNA Polymerase with Phosphonate Analogs of NTP and Inorganic Pyrophosphate. Molecular Biology 35, 717–729 (2001). https://doi.org/10.1023/A:1012330521865

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012330521865

Navigation