Skip to main content
Log in

Oxidation of Recombinant Human Interleukin-2 by Potassium Peroxodisulfate

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The oxidation of recombinant human interleukin-2 (rhIL-2) by potassium peroxodisulfate (KPS) with or without N,N,N′,N′-tetramethylethylenediamine (TEMED), which are used for the preparation of dextran-based hydrogels, was investigated.

Methods. The oxidation of (derivatives of) methionine, tryptophan, histidine and tyrosine, as well as rhIL-2 was investigated. Both the oxidation kinetics (RP-HPLC) and the nature of the oxidation products (mass spectrometry) were studied as a function of the KPS and TEMED concentration, and the presence of a competitive antioxidant, methionine.

Results. Under conditions relevant for the preparation of rhIL-2 loaded hydrogels, only methionine and tryptophan derivatives were susceptible to oxidation by KPS. The oxidation of these compounds was inhibited once TEMED was present, suggesting that the peroxodisulfate anion, rather than the radicals formed in the presence of TEMED, is the oxidative species. KPS only induced oxidation of the four methionines present in rhIL-2, whereas the tryptophan residue remained unaffected. The radicals, formed after KPS decomposition by TEMED, induced some dimerization of rhIL-2. The oxidation of rhIL-2 could be substantially reduced by the addition of methionine, or by pre-incubation of KPS with TEMED.

Conclusions. Only the methionine residues in rhIL-2 are oxidized by KPS. The extent of oxidation can be minimized by a proper selection of the reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. A. Rosenberg, M. T. Lotze, L. M. Muul, A. E. Chang, F. P. Avis, S. Leitman, W. M. Linehan, C. N. Robertson, R. E. Lee, and J. T. Rubin. A progress report on the treatment of 157 patients with advanced cancer using lymphokine activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med. 316:889-897 (1987).

    Google Scholar 

  2. W. Den Otter, R. A. Maas, J. W. Koten, H. F. J. Dullens, M. Bernsen, W. R. Klein, V. P. M. G. Rutten, P. A. Steerenberg, L. Balemans, E. J. Ruitenberg, F. W. G. Hill, and P. M. Heintz. Effective immunotherapy with local low doses of interleukin-2. In Vivo 5:561-566 (1991).

    Google Scholar 

  3. W. Den Otter, J. W. de Groot, M. R. Bernsen, P. M. Heintz, R. Maas, G. J. Hordijk, F. W. G. Hill, W. R. Klein, E. J. Ruitenberg, and V. P. M. G. Rutten. Optimal regimes for local IL-2 tumour therapy. Int. J. Cancer 66:400-403 (1996).

    Google Scholar 

  4. J. H. Donohue and S. A. Rosenberg. The fate of interleukin-2 after in vivo administration. J. Immunol. 130:2203-2208 (1983).

    Google Scholar 

  5. N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50:27-46 (2000).

    Google Scholar 

  6. W. E. Hennink, H. Talsma, J. C. H. Borchert, S. C. de Smedt, and J. Demeester. Controlled release of proteins from dextran hydrogels. J. Control. Release 39:47-55 (1996).

    Google Scholar 

  7. W. N. E. Van Dijk-Wolthuis, J. A. M. Hoogeboom, M. J. van Steenbergen, S. K. Y. Tsang, and W. E. Hennink. Degradation and release behavior of dextran-based hydrogels. Macromolecules 30:4639-4645 (1997).

    Google Scholar 

  8. O. Franssen, L. Vandervennet, P. Roders, and W. E. Hennink. Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres. J. Control. Release 60:211-221 (1999).

    Google Scholar 

  9. R. J. H. Stenekes, S. C. de Smedt, J. Demeester, G. Sun, Z. Zhang, and W. E. Hennink. Pore sizes in hydrated dextran microspheres. Biomacromolecules 1:696-703 (2001).

    Google Scholar 

  10. S. Li, C. Schöneich and R. T. Borchardt. Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization. Biotechnol. Bioeng. 48:490-500 (1995).

    Google Scholar 

  11. N. Brot and H. Weissbach. Biochemistry and physiological role of methionine sulfoxide residues in proteins. Arch. Biochem. Biophys. 223:271-281 (1983).

    Google Scholar 

  12. R. J. H. Stenekes and W. E. Hennink. Polymerization kinetics of dextran-bound methacrylate in an aqueous two phase system. Polymer 41:5563-5569 (2000).

    Google Scholar 

  13. K. Sasaoki, T. Hiroshima, S. Kusumoto, and K. Nishi. Oxidation of methionine residues of recombinant human interleukin-2 in aqueous solutions. Chem. Pharm. Bull. 37:2160-2164 (1989).

    Google Scholar 

  14. E. Atherton and R. C. Sheppard. Solid Phase Peptide Synthesis, IRL Press, Oxford, England, 1989.

    Google Scholar 

  15. G. B. Fields and R. L. Noble. Solid-phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 35:161-214 (1990).

    Google Scholar 

  16. F. J. Koppenhagen, G. Storm, and W. J. Underberg. Development of a routine analysis method for liposome encapsulated recombinant interleukin-2. J. Chromatogr. B. Biomed. Sci. Appl. 716:285-291 (1998).

    Google Scholar 

  17. T. H. Nguyen, J. Burnier, and W. Meng. The kinetics of relaxin oxidation by hydrogen peroxide. Pharm. Res. 10:1563-1571 (1993).

    Google Scholar 

  18. W. Wang. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 185:129-188 (1999).

    Google Scholar 

  19. G. Kell and H. Steinhart. Oxidation of tryptophan by H2O2 in model systems. J. Food Sci. 55:1120-1123 (1990).

    Google Scholar 

  20. R. C. Weast. Handbook of Chemistry and Physics, 62nd edition, CRC Press, Florida (1981–1982).

    Google Scholar 

  21. X. L. Lam, J. Y. Yang, and J. L. Cleland. Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. J. Pharm. Sci. 86:1250-1255 (1997).

    Google Scholar 

  22. X. De Feng, X. Qiu Guo, and K. Yuan Qiu. Study on the initiation mechanism of the vinyl polymerization with the system persulfate/N,N,N′,N′-tetramethylethylene diamine. Makromol. Chem. 189:77-83 (1988).

    Google Scholar 

  23. F. J. Koppenhagen, A. J. W. G. Visser, J. N. Herron, G. Storm, and D. J. A. Crommelin. Interaction of recombinant interleukin-2 with liposomal bilayers. J. Pharm. Sci. 87:707-714 (1998).

    Google Scholar 

  24. D. Perrin and W. H. Koppenol. The quantitative oxidation of methionine to methionine sulfoxide by peroxonitrite. Arch. Biochem. Biophys. 377:266-272 (2000).

    Google Scholar 

  25. N. Brot and H. Weissbach. The biochemistry of methionine sulfoxide residues in proteins. Trends Biochem. Sci. 7:137-139 (1982).

    Google Scholar 

  26. R. T. Dean, S. Fu, R. Stocker, and M. J. Davies. Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 324:1-18 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadée, J.A., van Steenbergen, M.J., Versluis, C. et al. Oxidation of Recombinant Human Interleukin-2 by Potassium Peroxodisulfate. Pharm Res 18, 1461–1467 (2001). https://doi.org/10.1023/A:1012213108319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012213108319

Navigation