Skip to main content
Log in

A New Look at Lipid-Membrane Structure in Relation to Drug Research

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Lipid-bilayer membranes are key objects in drug research in relation to (i) interaction of drugs with membrane-bound receptors, (ii) drug targeting, penetration, and permeation of cell membranes, and (iii) use of liposomes in micro-encapsulation technologies for drug delivery. Rational design of new drugs and drug-delivery systems therefore requires insight into the physical properties of lipid-bilayer membranes. This mini-review provides a perspective on the current view of lipid-bilayer structure and dynamics based on information obtained from a variety of recent experimental and theoretical studies. Special attention is paid to trans-bilayer structure, lateral molecular organization of the lipid bilayer, lipid-mediated protein assembly, and lipid-bilayer permeability. It is argued that lipids play a major role in lipid membrane-organization and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Singer and G. L. Nicolson. The fluid mosaic model of cell membranes. Science 172:720-730 (1972).

    Google Scholar 

  2. M. Bloom, E. Evans, and O. G. Mouritsen. Physical properties of the fluid lipid-bilayer component of cell membranes. Quart. Rev. Biophys. 24:293-397.

  3. O. G. Mouritsen and O. S. Andersen (eds.) In Search of a New Biomembrane Model. Biol. Skr. Dan. Vid. Selsk. 49:1-224 (1998).

  4. R. Lipowsky and E. Sackmann (eds). Structure and Dynamics of Membranes. Handbook of Biological Physics, Vol. 1A&B. Elsevier, Amsterdam, 1995, pp. 1-1020.

  5. O. G. Mouritsen and K. Jørgensen. Dynamical order and disorder in lipid bilayers. Chem. Phys. Lipids 73:3-25 (1994).

    PubMed  Google Scholar 

  6. O. G. Mouritsen and P. K. J. Kinnunen. Role of lipid organization and dynamics for membrane functionality. In K. M. Merz and B. Roux (eds.) Biological Membranes. From Computation to Experiment, Birkhäuser, Boston, 1996, pp. 463-502.

    Google Scholar 

  7. D. P. Tieleman, S. J. Marrink, and H. J. C. Berendsen. A computer's perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim. Biophys. Acta 1331:235-270 (1997).

    PubMed  Google Scholar 

  8. S. H. White. Hydrophobicity scales and hydrophobicity plots in the prediction of membrane protein structure. In S. H. White (ed.) Membrane Protein Structure: Experimental Approaches, Oxford University Press, New York, 1994, pp. 97-124.

    Google Scholar 

  9. W. C. Wimley and S. H. White. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature Struct. Biol. 3:842-848 (1996).

    PubMed  Google Scholar 

  10. M. T. Hyvönen, T. T. Rantala, and M. Ala-Korpela. Structure and dynamics properties of diunsaturated 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine lipid bilayer from molecular dynamics simulation. Biophys. J. 73:2907-2923 (1997).

    PubMed  Google Scholar 

  11. T. X. Xiang and B. D. Anderson. The relationship between permeant size and permeability in lipid bilayer membranes. J. Memb. Biol. 140:111-122 (1994).

    Google Scholar 

  12. H. E. Alper and T. R. Stouch. Orientation and diffusion of a drug analogue in biomembranes: molecular dynamics simulations. J. Phys. Chem. 99:5724-5731 (1995).

    Google Scholar 

  13. L. O. Bergelson, K. Gawrisch, J. A. Ferretti, and R. Blumenthal. (Eds.) Special Issue on Domain Organization in Biological Membranes. Mol. Memb. Biol. 12:1-162 (1995).

    Google Scholar 

  14. O. G. Mouritsen and K. Jørgensen. Small-scale lipid-membrane structure: simulation versus experiment. Curr. Opin. Struct. Biol. 7:518-527 (1997).

    PubMed  Google Scholar 

  15. O. G. Mouritsen. Self-assembly and organization of lipid-protein membranes. Curr. Opin. Colloid Int. Sci. 3:78-87 (1998).

    Google Scholar 

  16. A. Kusumi and S. Yashushi. Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol. 8:566-574 (1996).

    PubMed  Google Scholar 

  17. M. Edidin. Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol. 7:528-532 (1997).

    PubMed  Google Scholar 

  18. S. Pedersen, K. Jørgensen, T. Bækmark, and O. G. Mouritsen. Indirect evidence for lipid-domain formation in the transition region of phospholipid bilayers by two-probe fluorescence energy transfer. Biophys. J. 71:554-560 (1996).

    PubMed  Google Scholar 

  19. J. Y. A. Lehtonen, J. M. Holopainen, and P. J. K. Kinnunen. Evidence for the formation of microdomains in liquid crystalline large unilamellar vesicles caused by hydrophobic mismatch of the constituent phospholipids. Biophys. J. 70:1753-1760 (1996).

    PubMed  Google Scholar 

  20. B. Piknová, D. Marsh, and T. E. Thompson. Flourescence-quenching study of percolation and compartmentalization in two-phase lipid bilayers. Biophys. J. 71:892-897 (1996).

    PubMed  Google Scholar 

  21. V. Schram, H. N. Lin, and T. E. Thompson. Topology of gelphase domains and lipid mixing properties in phase separated two-component phosphatidylcholine bilayers. Biophys. J. 71:1811-1822 (1996).

    PubMed  Google Scholar 

  22. C. Gliss, H. Clausen-Schaumann, R. Günther, S. Odenbach, O. Randl, and T. M. Bayerl. Direct detection of domains in phospholipid bilayers by grazing incidence diffraction of neutrons and atomic force microscopy. Biophys. J. 74:2443-2450. (1998).

    PubMed  Google Scholar 

  23. L. Kildemark, T. Bj/ofrnholm, and O. G. Mouritsen. Direct visualization of critical fluctuations in lipid monolayers. (preprint, 1998).

  24. O. G. Mouritsen, K. Jørgensen, and T. Hønger. Permeability of lipid bilayers near the phase transition. In: Permeability and Stability of Lipid Bilayers (E. A. Disalvo and S. A. Simon, eds.). CRC Press, Boca Raton, Florida, 1995, pp. 137-160.

    Google Scholar 

  25. T. Hønger, K. Mortensen, J. H. Ipsen, J. Lemmich, R. Bauer, and O. G. Mouritsen. Anomalous swelling of multilamellar lipid bilayers in the transition region by renormalization of curvature elasticity. Phys. Rev. Lett. 72:3911-3914 (1994).

    PubMed  Google Scholar 

  26. E. Sackmann. Membrane bending energy concept of vesicle-and cell-shapes and shape transitions. FEBS Lett. 346:3-16 (1994).

    PubMed  Google Scholar 

  27. G. Cevc. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 13:257-388 (1996).

    Google Scholar 

  28. P. K. J. Kinnunen, A. Kõiv, J. Y. A. Lehtonen, M. Rytsmaa, and P. Mustonen. Lipid dynamics and peripheral interactions of proteins with membrane surfaces. Chem. Phys. Lipids 73:181-207 (1994).

    PubMed  Google Scholar 

  29. A. R. G. Dibble, A. K. Hinderleiter, J. J. Sando, and R. L. Biltonen. Lipid lateral heterogeneity in phosphatidylcholine/phosphatidylserine/diacylglycerol vesicles and its influence on protein kinase C activation. Biophys. J. 71:1877-1890 (1996).

    PubMed  Google Scholar 

  30. L. Yang and M. Glaser. Formation of membrane domains during the activation of protein kinase C. Biochemistry 35:13966-13974 (1996).

    PubMed  Google Scholar 

  31. A. K. Hinderleiter, A. R. G. Dibble, R. L. Biltonen, and J. J. Sando. Activation of protein kinase C by coexisting diacylglycerol/enriched and diacylglycerol-poor lipid domains. Biochemistry 36:6141-6148 (1997).

    PubMed  Google Scholar 

  32. M. Glaser, S. Wanaski, C. A. Buser, V. Boguslavsky, W. Rashidzada, A. Morris, M. Rebecchi, S. F. Scarlata, L. W. Runnels, G. D. Prestwich, J. Chen, A. Aderem, J. Ahn, and S. McLaughlin. Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains. J. Biol. Chem. 271:26187-26193 (1996).

    PubMed  Google Scholar 

  33. T. Hønger, K. Jørgensen, R. L. Biltonen, and O. G. Mouritsen. Systematic relationship between phospholipase A2 activity and dynamic lipid bilayer microheterogeneity. Biochemistry 35:9003-9006 (1996).

    PubMed  Google Scholar 

  34. T. Hønger, K. Jørgensen, D. Stokes, R. L. Biltonen, and O. G. Mouritsen. Phospholipase A2 activity and physical properties of lipid-bilayer substrates. Methods Enzymol. 286:168-190 (1997).

    PubMed  Google Scholar 

  35. J. Y. A. Lehtonen and P. K. J. Kinnunen. Phospholipase A2 as a mechanosensor. Biophys. J. 68:1888-1894 (1995).

    PubMed  Google Scholar 

  36. G. Basanez, J.-L. Nieva, F. Goñi, and A. Alonso. Origin of the lag period in the phospholipase C cleavage of phospholipids in membranes. Concomitant vesicle aggregation and enzyme activation. Biochemistry 35:15183-15187 (1996).

    PubMed  Google Scholar 

  37. K. Jørgensen, J. H. Ipsen, O. G. Mouritsen, and M. J. Zuckermann. The effect of anaesthetics on the dynamic heterogeneity of lipid membranes. Chem. Phys. Lipids 65:205-216 (1993).

    PubMed  Google Scholar 

  38. E. C. C. Melo, I. M. Lourtie, M. B. Sankaram, T. E. Thompson, and W. L. C. Vaz. The effect of domain connection and disconnection on the yields of in-plane bimolecular reactions in membranes. Biophys. J. 63:1506-1512 (1992).

    PubMed  Google Scholar 

  39. R. M. Epand. The properties and biological roles of non-lamellar forming lipids. Chem. Phys. Lipids 81:101-264 (1996).

    Google Scholar 

  40. D. Marsh. Intrinsic curvature in normal and inverted lipid structures and in membranes. Biophys. J. 70:2248-2255 (1996).

    PubMed  Google Scholar 

  41. P. K. J. Kinnunen. On the molecular-level mechanics of peripheral protein-membrane interactions induced by lipids forming inverted non-lamellar phases. Chem. Phys. Lipids 81:151-166 (1996).

    Google Scholar 

  42. J. S. Lundbaek, A. M. Maer, and O. S. Andersen. Lipid bilayer elactrostatic energy, curvature stress, and assembly of gramicidin channels. Biochemistry 36:5695-5701 (1997).

    PubMed  Google Scholar 

  43. M. F. Brown. Influence of nonlamellar-forming lipids on rhodopsin. Curr. Topics in Membranes 44:285-356 (1997).

    Google Scholar 

  44. P. K. J. Kinnunen. On the mechanism of the lamellar → hexagonal HH phase transition and the biological significance of the HH propensity. In Handbook of nonmedical applications of liposomes. Vol. 1., D. D. Lasic and Y. Barenholz, eds. CRC Press, Boca Raton, FL, 1996, pp. 153-171.

    Google Scholar 

  45. T. Gil, J. H. Ipsen, O. G. Mouritsen, M. C. Sabra, M. M. Sperotto, and M. J. Zuckermann. Theoretical analysis of protein organization in lipid membranes. Biochim. Biophys. Acta. Reviews on Biomembranes (in press. 1998).

  46. O. G. Mouritsen and M. Bloom. Mattress model of lipid-protein interactions in membranes. Biophys. J. 46:141-153 (1984).

    PubMed  Google Scholar 

  47. P. A. Kralchevsky, V. N. Paunov, and N. D. Denkov. Stresses in lipid membranes and interactions between inclusions. J. Chem. Soc. Faraday Trans. 91:3415-3432 (1995).

    Google Scholar 

  48. R. S. Cantor. Lateral pressures in cell membranes: a mechanism for modulation of protein function. J. Phys. Chem. B 101:1723-1726 (1997).

    Google Scholar 

  49. F. Dumas, M. M. Sperotto, C. Lebrun, J.-F. Tocanne, and O. G. Mouritsen. Molecular sorting of lipids by bacteriorhodopsin in DLPC/DSPC lipid bilayers. Biophys. J. 73:1940-1953 (1997).

    PubMed  Google Scholar 

  50. D. Marsh. Lipid-protein interactions in membranes. FEBS Lett. 268:371-375 (1990).

    PubMed  Google Scholar 

  51. L. I. Horváth, H. R. Arias, H. O. Hankovszky, K. Hideg, F. J. Barrantes, and D. Marsh. Association of spin-labeled local anesthetics at the hydrophobic surface of acetylcholine receptor in native membranes from Torpedo marmotata. Biochemistry 29:8707-8713 (1990).

    PubMed  Google Scholar 

  52. C. Ho, M. B. Kelly, and C. D. Stubbs. The effects of phospholipid unsaturation and alcohol perturbation at the protein/lipid interface probed using fluorophore lifetime heterogeneity. Biochim. Biophys. Acta 1193:307-315 (1994).

    PubMed  Google Scholar 

  53. N. P. Franks and W. R. Lieb. Where do general anaesthetics act? Nature 274:339-342 (1978).

    PubMed  Google Scholar 

  54. B. Piknová, D. Marsh, and T. E. Thompson. Flourescence quenching and ESR study of percolation in a two-phase lipid bilayer containing bacteriorhodopsin. Biophys. J. 72:2660-2668 (1997).

    PubMed  Google Scholar 

  55. V. Schram and T. E. Thompson. Influence of the intrinsic membrane protein bacteriorhodopsin on the gel phase domain topology in two-component phase-separated bilayers. Biophys. J. 72:2217-2225 (1997).

    PubMed  Google Scholar 

  56. T. Gil, M. C. Sabra, J. H. Ipsen, and O. G. Mouritsen. Wetting and capillary condensation as means of protein organization in membranes. Biophys. J. 73:1728-1741 (1997).

    PubMed  Google Scholar 

  57. M. C. Sabra and A. Watts. A general model for 2D-array formation of membrane proteins. Biophys. J. (1997) (submitted).

  58. D. Papahadjopoulos, K. Jacobsen, S. Nir, and T. Isac. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effects of temperature and cholesterol. Biochim. Biophys. Acta 311:330-348 (1973).

    PubMed  Google Scholar 

  59. L. Cruzeiro-Hansson and O. G. Mouritsen. Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area. Biochim. Biophys. Acta 944:63-72 (1988).

    PubMed  Google Scholar 

  60. J. Liu, E. Y. Rosenberg, and H. Nikaido. Fluidity of the lipid domain of cell wall from Mycobacterium chelonae. Proc. Natl. Acad. Sci. USA 92:11254-11258 (1995).

    PubMed  Google Scholar 

  61. J. Thewalt, N. Kitson, C. Araujo, A. Mackay, and M. Bloom. Models of stratum corneum intercellular membranes: the spingolipid headgroup is a determinant of phase behavior in mixed lipid dispersions. Biochem. Biphys. Res. Commun. 188:1247-1252 (1992).

    Google Scholar 

  62. N. Kitson, J. Thewalt, M. Lafleur, and M. Bloom. A model membrane approach to the epidermal permeability barrier. Biochemistry 33:6707-6715 (1994).

    PubMed  Google Scholar 

  63. J. E. Harrison, P. W. Groundwater, K. R. Brain, and J. Hadgraft. Azone induced fluidity in human stratum corneum. A fourier transform infrared spectroscopy investigation using the perdeuterated analogue. J. Contr. Rel. 41:283-290 (1996).

    Google Scholar 

  64. V. H. L. Lee. Protease inhibitors and penetration enhancers to modify peptide absorption. J. Contr. Rel. 13:69-97 (1990).

    Google Scholar 

  65. J. Risbo, K. Jørgensen, M. M. Sperotto, and O. G. Mouritsen. Phase behavior and permeability properties of phospholipid bilayers containing a short-chain phospholipid permeability enhancer. Biochim. Biophys. Acta 1329:85-96 (1997).

    PubMed  Google Scholar 

  66. K. Jørgensen, M. M. Sperotto, O. G. Mouritsen, J. H. Ipsen, and M. J. Zuckermann. Phase equilibria and local structure in binary lipid bilayers. Biochim. Biophys. Acta. 1152:135-145 (1993).

    PubMed  Google Scholar 

  67. O. G. Mouritsen and K. Jørgensen. Micro-, nano-, and meso-scale heterogeneity of lipid bilayers and its influence on macroscopic membrane properties. Mol. Memb. Biol. 12:15-20 (1995).

    Google Scholar 

  68. M. C. Sabra, K. Jørgensen, and O. G. Mouritsen. Lindane suppresses the lipid-bilayer permeability in the main transition region. Biochim. Biophys. Acta 1282:85-92 (1996).

    PubMed  Google Scholar 

  69. M. C. Sabra, K. Jørgensen, and O. G. Mouritsen. Calorimetric and theoretical studies of the effects of lindane on lipid bilayers of different acyl-chain length. Biochim. Biophys. Acta 1233:89-104 (1995).

    PubMed  Google Scholar 

  70. M. C. Antunes-Madeira and V. M. C. Madeira. Partitioning of lindane in synthetic and native membranes. Biochim. Biophys. Acta 820:165-172 (1985).

    PubMed  Google Scholar 

  71. G. S. Clerc and T. E. Thompson. Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer membranes with coexisting gel and liquid-crystalline phases. Biophys. J. 68:2333-2341 (1995).

    PubMed  Google Scholar 

  72. E. Freire and R. L. Biltonen. Estimation of molecular averages and equilibrium fluctuations in lipid bilayer systems from excess heat capacity function. Biochim. Biophys. Acta 514:54-68 (1978).

    PubMed  Google Scholar 

  73. J. S. Andersen, K. Jørgensen, and O. G. Mouritsen. Permeability of lipid bilayer mixtures using fluorescence quenching methods. submitted to Biophys. J. (1998).

  74. K. Jørgensen and O. G. Mouritsen. Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys. J. 69:942-954 (1995).

    PubMed  Google Scholar 

  75. K. Jørgensen, A. Klinger, M. Braiman, and R. L. Biltonen. Slow nonequilibrium dynamical rearrangement of the lateral structure of a lipid membrane. J. Chem. Phys. 100:2766-2769 (1996).

    Google Scholar 

  76. U. Seifert. Curvature-induced lateral phase separation in two-component vesicles. Phys. Rev. Lett. 70:1335-1338 (1993).

    PubMed  Google Scholar 

  77. J. N. Weinstein, R. L. Magin, M. B. Yatvin, and D. S. Zaharko. Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Science 204:188-191 (1979).

    PubMed  Google Scholar 

  78. J. B. Bassett, J. R. Tacker, R. U. Anderson, and D. Bostwick. Treatment of experimental bladder cancer with hyperthermia and phase transtition liposomes containing methotrexate. J. Urology 139:634-636 (1987).

    Google Scholar 

  79. A. Sharma and U. S. Sharma. Liposomes in drug delivery: progress and limitations. Int. J. Pharm. 154:123-140 (1997).

    Google Scholar 

  80. J. H. Ipsen, K. Jørgensen, and O. G. Mouritsen. Density fluctuations in saturated phospholipid bilayers increase as the acylchain length decreases. Biophys. J. 58:1099-1107 (1990).

    PubMed  Google Scholar 

  81. J. Y. Lai, D. D. Chow, and K. J. Hwang. Effect of lipid composition on insulin-mediated fusion of small unilamellar liposomes: a kinetic study. J. Pharm. Sci. 77:432-437 (1988).

    PubMed  Google Scholar 

  82. L. V. Chernomordik and J. Zimmerberg. Bending membranes to the task: structural intermediates in bilayer fusion. Curr. Opin. Struc. Biol. 5:541-547 (1995).

    Google Scholar 

  83. G. Cevc, J. M. Seddon, R. Hartung, and W. Eggert. Phosphatidyl-choline-fatty acid membranes. I. Effects of protonation, salt concentration, temperature and chain-length on the colloidal and phase properties of mixed vesicles, bilayers and nonlamellar structures. Biochim. Biophys. Acta 940:219-240 (1988).

    PubMed  Google Scholar 

  84. S. Zellmer, G. Cevc, and P. Risse. Temperature-and pH-controlled fusion between complex lipid membranes. Examples with the diacylphosphatidylcholine/fatty acid mixed liposomes. Biochim. Biophys. Acta 1196:101-113 (1994).

    PubMed  Google Scholar 

  85. G. Cevc. Agent targeting by means of the chemically or physically directed. fusogenic liposomes. J. Lip. Res. 6:643-663 (1996).

    Google Scholar 

  86. J. Senior. Fate and behaviour of liposomes in vivo: a review of controlling factors. Crit. Rev. Ther. Drug Carr. Syst. 3:123-193 (1987).

    Google Scholar 

  87. J. H. Ipsen, O. G. Mouritsen, and M. J. Zuckermann. Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol. Biophys. J. 56:661-667 (1989).

    PubMed  Google Scholar 

  88. J. H. Ipsen, O. G. Mouritsen, and M. Bloom. Relationship between lipid membrane area, hydrophobic thickness, and acylchain orientational order. The effects of cholesterol. Biophys. J. 57:405-412 (1990).

    PubMed  Google Scholar 

  89. O. Zelphati and F. C. S. Szoka Jr. Liposomes as a carrier for intracellular delivery of antisense oligonucleotides: a real or magic bullet? J. Cont. Release 41:99-119 (1996).

    Google Scholar 

  90. R. I. Mahato, A. Rolland, and R. Tomlinson. Cationic lipid-based gene delivery systems: pharmaceutical perspectives. Pharm. Res. 14:853-859 (1997).

    PubMed  Google Scholar 

  91. D. D. Lasic and N. S. Templeton. Liposomes in gene therapy. Adv. Drug Deliv. Rev. 20:221-266 (1996).

    Google Scholar 

  92. J. O. Rädler, I. Koltover, T. Salditt, and C. R. Safinya. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:811-814 (1997).

    Google Scholar 

  93. I. van der Woude, H. W. Visser, M. B. A. ter Beest, A. Wagenaar, M. H. J. Ruiters, J. B. F. N. Engberts, and D. Hoekstra. Parameters influencing the introduction of plasmid DNA into cells by the use of synthetic amphiphiles as a carrier system. Biochim. Biophys. Acta 1240:34-40 (1995).

    PubMed  Google Scholar 

  94. D. Harries, S. May, W. M. Gelbart, and A. Ben-Shaul. Structure, stability and thermodynamics of lamellar DNA-lipid complexes. Biophys. J. (preprint, 1998).

  95. A. K. Hinderliter, J. Huang, and G. W. Feigenson. Detection of phase separation in fluid phosphatidylserine/phosphatidylcholine mixtures. Biophys. J. 67:1906-1911 (1994).

    PubMed  Google Scholar 

  96. J. Lemmich, T. Hønger, K. Mortensen, J. H. Ipsen, R. Bauer, and O. G. Mouritsen. Solutes in small amounts provide for lipid-bilayer softness: cholesterol, short-chain lipids, and bola lipids. Eur. Biophys. J.: Biophysics Letters 25:61-65 (1996).

    Google Scholar 

  97. G. Cevc, A. Schätzlein, and G. Blume. Transdermal drug carriers: basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides. J. Contr. Rel. 36:3-16 (1995).

    Google Scholar 

  98. D. E. Vance and J. Vance. (Eds.) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam. (1991).

    Google Scholar 

  99. M. J. Sheffield, B. L. Baker, D. Li, N. L. Owen, M. L. Baker, and J. D. Bell. Enhancement of Agkistrodon piscivorus piscivorus venom phospholipase A2 activity toward phosphatidylcholine vesicle by lysolecithin and palmitic acid: studies with fluorescent probes of membrane structure. Biochemistry 34:7796-7806 (1995).

    PubMed  Google Scholar 

  100. D. D. Lasic and F. Martin. (Eds.) Stealth liposomes. CRC Press, Boca Raton, Florida. (1995).

    Google Scholar 

  101. A. Chonn and P. R. Cullis. Recent advances in liposomal drugdelivery systems. Curr. Opin. Biotechnol. 6:698-708 (1995).

    PubMed  Google Scholar 

  102. K. Hristova and D. Needham. The influence of polymer-grafted lipids on the physical properties of lipid bilayers: a theoretical study. J. Colloid Interface Sci. 168:302-314 (1994).

    Google Scholar 

  103. K. Hristova, A. Kenworthy, and T. J. McIntosh. Effect of bilayer composition on the phase behaviour of liposomal suspensions containing poly(ethylene glycol)-lipids. Macromolecules 28: 7693-7699 (1995).

    Google Scholar 

  104. A. K. Kenworthy, S. A. Simon, and T. J. McIntosh. Structure and phase behavior of lipid suspensions containing phospholipids with covalently attached poly(ethylene glycol). Biophys. J. 68:1903-1920 (1995).

    PubMed  Google Scholar 

  105. T. R. Baekmark, S. Pedersen, K. Jørgensen, and O. G. Mouritsen. The effects of ethylene oxide containing lipopolymers and triblock copolymers on lipid bilayers of dipalmitoylphosphatidyl-choline. Biophys. J. 73:1479-1491 (1997).

    PubMed  Google Scholar 

  106. A. K. Kenworthy, K. Hristova, D. Needham, and T. J. McIntosh. Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol). Biophys. J. 68:1921-1936 (1995).

    PubMed  Google Scholar 

  107. A. Chonn, S. C. Semple, and P. R. Cullis. Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J. Biol. Chem. 267:18759-18765 (1992).

    PubMed  Google Scholar 

  108. G. Blume and G. Cevc. Molecular mechanism of the lipid vesicle longevity in vivo. Biochim. Biophys. Acta 1146:157-168 (1993).

    PubMed  Google Scholar 

  109. D. D. Lasic and D. Needham. The “Stealth” liposome: a prototypical biomaterial. Chem. Rev. 95:2601-2628 (1995).

    Google Scholar 

  110. C. Vermehren, T. Kiebler, I. Hylander, T. H. Callisen, and K. Jørgensen. Increase in phopholipase A2 activity towards lipopolymer containing liposomes. Biochim. Biophys. Acta 1373:27-36 (1998).

    PubMed  Google Scholar 

  111. M. H. Gelb, M. K. Jain, and O. G. Berg. Inhibition of phospholipase A2. FASEB J. 8:916-924 (1994).

    PubMed  Google Scholar 

  112. M. K. Jain and O. G. Berg. The kinetics of interfacial catalysis by phopholipase A2 and regulation of interfacial activation: hopping versus scooting. Biochim. Biophys. Acta 1002:127-156 (1989).

    PubMed  Google Scholar 

  113. L. P. Zanello, E. Aztiria, S. Antollini, and F. J. Barrantes. Nicotinic acetylcholine receptor channels are influenced by the physical state of their membrane environment. Biophys. J. 70:2155-2164 (1996).

    PubMed  Google Scholar 

  114. J. S. Lundbaek and O. S. Andersen. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol. 104:645-673 (1994).

    PubMed  Google Scholar 

  115. J. S. Lundbaek, P. Birn, J. Girshman, A. J. Hansen, and O. S. Andersen. Membrane stiffness and channel function. Biochemistry 35:3825-2830 (1996).

    PubMed  Google Scholar 

  116. I. Bosch, K. Dunussi-Joannopoulos, R.-L. Wu, S. T. Furlong, and J. Croop. Phosphatidylcholine and phosphatidylethanolamine behave as substrates of the human MDR1 P-glycoprotein. Biochemistry 36:5685-5694 (1997).

    PubMed  Google Scholar 

  117. M. E. Taub, B. A. Moss, B. Steffansen, and S. Frokjaer. Influence of oligopeptide transporter binding affinity upon uptake and transport of d-Asp(OBzl)-Ala and Asp(OBzl)-Sar in filter-grown Caco-2 monolayers. Int. J. Pharm. 156:219-228 (1997).

    Google Scholar 

  118. H. J. Little. How has molecular pharmacology contributed to our understanding of the mechanism(s) of general anesthesia. Pharmacol. Ther. 69:37-58 (1996).

    PubMed  Google Scholar 

  119. D. Goren, A. Gabizon, and Y. Barenholz. The influence of physical characteristics of liposomes containing doxorubicin on their pharmacological behavior. Biochim. Biophys. Acta 1029:285-294 (1990).

    PubMed  Google Scholar 

  120. A. Gawron, K. Wojtowicz, L. E. Misiak, and W. I. Gruszecki. Effects of incorporation of lutein and 8-mehoxypsoralen into erythrocyte and liposomal membranes. Pharm. Sci. 2:89-91 (1996).

    Google Scholar 

  121. J. G. Bovill. Mechanisms of actions of anaesthetic drugs. Curr. Opin. Anaesthesiol. 10:261-266 (1997).

    Google Scholar 

  122. R. C. Aloia, C. C. Curtain, and L. M. Gordon. (Eds.) Advances in membrane fluidity. Drug and anesthetic effects on membrane structure and function. Vol. 5, Wiley-Liss, Inc. New York. (1991).

    Google Scholar 

  123. E. Lasonder and W. D. Weringa. An NMR and DSC study of the interaction of phospholipid vesicles with some anti-inflammatory agents. J. Colloid Int. Sci. 139:469-478 (1990).

    Google Scholar 

  124. S-J Bae, S. Kitamura, L. G. Herbette, and J. M. Sturtevant. The effects of calcium channel blocking drugs on the thermotropic behavior of dimyristoylphosphatidylcholine. Chem. Phys. Lipids 51:1-7 (1989).

    PubMed  Google Scholar 

  125. R. S. Cantor. The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry 36:2339-2344 (1997).

    PubMed  Google Scholar 

  126. J. A. Barry and K. Gawrisch. Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers. Biochemistry 33:8082-8088 (1994).

    PubMed  Google Scholar 

  127. C. Trandum, P. Westh, K. Jørgensen, and O. G. Mouritsen. Effects of ethanol on unilamellar liposomes containing cholesterol, sphingomyelin and ganglioside: a titration calorimetry study. submitted to Biophys. J. (1998).

  128. P. Tang, B. Yan, and Y. Xu. Different distribution of fluorinated anesthetics and nonanesthetics in model membrane: a 10F NMR study. Biophys. J. 72:1676-1682 (1997).

    PubMed  Google Scholar 

  129. C. North and D. S. Cafiso. Contrasting membrane localization and behavior of halogenated cyclobutanes that follow or violate the Meyer-Overton hypothesis of general anesthetic potency. Biophys. J. 72:1754-1761 (1997).

    PubMed  Google Scholar 

  130. D. B. Mountcastle, R. L. Biltonen, and M. J. Halsey. Effects of anesthetics and pressure on the thermotropic behavior of multilamellar dipalmitoylphosphatidylcholine liposomes. Proc. Natl. Acad. Sci. USA 75:4906-4910 (1979).

    Google Scholar 

  131. F. Rinaldi, M. Lin, M. J. Shapiro, and M. Petersheim. δ-opiate DPDPE in magnetically oriented phospholipid micelles: binding and arrangement of aromatic pharmacophores. Biophys. J. 73:3337-3348 (1997).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouritsen, O.G., Jørgensen, K. A New Look at Lipid-Membrane Structure in Relation to Drug Research. Pharm Res 15, 1507–1519 (1998). https://doi.org/10.1023/A:1011986613392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011986613392

Navigation