Skip to main content
Log in

Mössbauer Studies in the Mechanochemistry of Spinel Ferrites

  • Published:
Journal of Materials Synthesis and Processing

Abstract

Mössbauer spectroscopy can provide information on a large variety of mechanochemical processes in solids. In this overview, selected examples are presented of Mössbauer studies of homogeneous and heterogeneous mechanochemical reactions in spinel ferrites. Several interesting features are involved in the work, e.g., mechanically induced cation redistributions, changes of nearest-neighbor configurations, superparamagnetic relaxation, spin-canting effects, as well as formation and redox reactions. The considerable literature on mechanically treated spinel ferrites is reviewed. Despite numerous efforts, the understanding of the nonequilibrium mechanochemical processes in spinel ferrites is considered to be far from complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. G. A. Sawatzky, F. Van Der Woude, and A. H. Morrish, Phys. Rev. 187, 747 (1969).

    Google Scholar 

  2. R. E. Vandenberghe and E. De Grave, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 3, G. J. Long and F. Grandjean, eds. (Plenum Press, New York, 1989), pp. 59–182.

    Google Scholar 

  3. S. Mørup, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, G. J. Long, ed. (Plenum Press, New York, 1987), pp. 89–123.

    Google Scholar 

  4. F. Menil, J. Phys. Chem. Solids 46, 763 (1985).

    Google Scholar 

  5. R. Valenzuela, Magnetic Ceramics (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  6. F. Grandjean, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, G. J. Long, ed. (Plenum Press, New York, 1987), pp. 241–271.

    Google Scholar 

  7. F. Van Der Woude and G. A. Sawatzky, Phys. Rev. B 4, 3159 (1971).

    Google Scholar 

  8. V. V. Boldyrev, Reactivity of Solids: Past, Present and Future (Blackwell Science, Oxford, 1996).

    Google Scholar 

  9. V. Šepelák and K. D. Becker, J. Metastable Nanocrystall. Mater. 8, 332 (2000).

    Google Scholar 

  10. V. Šepelák, D. Baabe, F. J. Litterst, and K. D. Becker, Hyperfine Interactions 126, 143 (2000).

    Google Scholar 

  11. V. Šepelák, D. Baabe, F. J. Litterst, and K. D. Becker, J. Appl. Phys., 88, 5884 (2000).

    Google Scholar 

  12. V. Šepelák, D. Baabe, and K. D. Becker, J. Mater. Synthesis Process. submitted.

  13. V. Šepelák, S. Wißmann, and K. D. Becker, J. Magn. Magn. Mater. 203, 135 (1999).

    Google Scholar 

  14. P. Druska, U. Steinike, and V. Šepelák, J. Solid State Chem. 146, 13 (1999).

    Google Scholar 

  15. J. Z. Jiang, G. F. Goya, and H. R. Rechenberg, J. Phys. Condens. Matter 11, 4063 (1999).

    Google Scholar 

  16. J. Z. Jiang, P. Wynn, S. Mørup, T. Okada, and F. J. Berry, Nanostruct. Mater. 12, 737 (1999).

    Google Scholar 

  17. W. A. Kaczmarek, J. Magn. Magn. Mater. 197, 173 (1999).

    Google Scholar 

  18. G. F. Goya, H. R. Rechenberg, and J. Z. Jiang, J. Appl. Phys. 84, 1101 (1998).

    Google Scholar 

  19. V. Šepelák, U. Steinike, D. Chr. Uecker, R. Trettin, S. Wißmann, and K. D. Becker, Solid State Ionics 101–103, 1343 (1997).

    Google Scholar 

  20. V. Šepelák, K. Jancke, J. Richter-Mendau, U. Steinike, D. Chr. Uecker, and A. Yu. Rogachev, Kona 12, 87 (1994).

    Google Scholar 

  21. V. V. Boldyrev, Mater. Sci. Forum 225, 511 (1996).

    Google Scholar 

  22. G. F. Goya, H. R. Rechenberg, M. Chen, and W. B. Yelon, J. Appl. Phys. 87, 8005 (2000).

    Google Scholar 

  23. D. J. Fatemi, V. G. Harris, M. X. Chen, S. K. Malik, W. B. Yelon, G. J. Long, and A. Mohan, J. Appl. Phys. 85, 5172 (1999).

    Google Scholar 

  24. V. Nivoix, F. Bernard, E. Gaffet, P. Perriat, and B. Gillot, Powder Technol. 105, 155 (1999).

    Google Scholar 

  25. Y. Shi, J. Ding, X. Liu, and J. Wang, J. Magn. Magn. Mater. 205, 249 (1999).

    Google Scholar 

  26. V. Šepelák, U. Steinike, D. Chr. Uecker, S. Wißmann, and K. D. Becker, J. Solid State Chem. 135, 52 (1998).

    Google Scholar 

  27. M. Millot, S. Begin-Colin, P. Perriat, and G. Le Caër, J. Solid State Chem. 139, 66 (1998).

    Google Scholar 

  28. D. Arcos, R. Valenzuela, M. Vázquez, and M. Vallet-Regí, J. Solid State Chem. 141, 10 (1998).

    Google Scholar 

  29. J. Ding, P. G. McCormick, and R. Street, J. Magn. Magn. Mater. 171, 309 (1997).

    Google Scholar 

  30. A. Jovaleki, M. Zduji, A. Radakovi, and M. Mitri, Mater. Lett. 24, 365 (1995).

    Google Scholar 

  31. G. R. Karagedov and E. A. Konovalova, in Proceedings of the First International Conference on Mechanochemistry, Part 2, K. Tkáčová, ed. (Cambridge Interscience Publishing, Cambridge, 1994), pp. 70–72.

    Google Scholar 

  32. L. Takacs, Mater. Lett. 13, 119 (1992).

    Google Scholar 

  33. M. Menzel, V. Šepelák, and K. D. Becker, J. Solid State Chem. submitted (2001).

  34. M. Menzel, V. Šepelák, and K. D. Becker, Solid State Ionics in print (2001).

  35. V. Šepelák, A. Buchal, K. Tkáčová, and K. D. Becker, Mater. Sci. Forum 278–281, 862 (1998).

    Google Scholar 

  36. H. St. C. O'Neill, H. Annersten, and D. Virgo, Amer. Mineral. 77, 725 (1992).

    Google Scholar 

  37. C. P. Marshall and W. A. Dollase, Amer. Mineral. 69, 928 (1984).

    Google Scholar 

  38. J. Battle, T. Clark, and B. J. Evans, J. Phys. IV7, C1-257 (1997).

    Google Scholar 

  39. T. M. Clark and B. J. Evans, IEEE Trans. Magn. 33, 3745 (1997).

    Google Scholar 

  40. C. R. Bluncson, G. K. Thompson, and B. J. Evans, Hyperfine Interactions 90, 353 (1994).

    Google Scholar 

  41. M. Arshed, N. M. Butt, A. Siddique, M. Anwar-ul-Islam, T. Abbas, and M. Ahmed, Solid State Commun. 84, 717 (1992).

    Google Scholar 

  42. A. H. Morrish and P. E. Clark, Phys. Rev. B 11, 278 (1975).

    Google Scholar 

  43. S. Lucchesi, U. Russo, and A. Della Giusta, Eur. J. Mineral. 11, 501 (1999).

    Google Scholar 

  44. T. Kamiyama, K. Haneda, T. Sato, S. Ikeda, and H. Asano, Solid State Commun. 81, 563 (1992).

    Google Scholar 

  45. H. St. C. O'Neill, Eur. J. Mineral. 4, 571 (1992).

    Google Scholar 

  46. T. Abbas, Y. Khan, M. Ahmad, and S. Anwar, Solid State Commun. 82, 701 (1992).

    Google Scholar 

  47. S. Ligenza, M. Lukasiak, Z. Kucharski, and J. Suwalski, Phys. Stat. Solidi (b) 117, 465 (1983).

    Google Scholar 

  48. F. K. Lotgering, J. Phys. Chem. Solids 27, 139 (1966).

    Google Scholar 

  49. J. M. Hastings and L. M. Corliss, Phys. Rev. 102, 1460 (1956).

    Google Scholar 

  50. V. Šepelák, P. Druska, and U. Steinike, Mater. Struct. 6, 100 (1999).

    Google Scholar 

  51. V. Šepelák, K. Tkáčová, and A. I. Rykov, Crystallogr. Res. Technol. 28, 53 (1993).

    Google Scholar 

  52. V. Šepelák, K. Tkáčová, V. V. Boldyrev, and U. Steinike, Mater. Sci. Forum 228–231, 783 (1996).

    Google Scholar 

  53. W. Kockelmann, W. Schäfer, A. Kirfel, F. J. Burghart, W. Potzel, G. M. Kalvius, and S. J. Campbell, Z. Kristallogr., Suppl. 16, 156 (1999).

    Google Scholar 

  54. H. H. Hamdeh, J. C. Ho, S. A. Oliver, R. J. Willey, G. Oliveri, and G. Busca, J. Appl. Phys. 81, 1851 (1997).

    Google Scholar 

  55. V. Šepelák, S. Wißmann, and K. D. Becker, J. Magn. Magn. Mater. 203, 135 (1999).

    Google Scholar 

  56. V. Šepelák, K. Tkáčová, V. V. Boldyrev, S. Wißmann, and K. D. Becker, Physica B 234–236, 617 (1997).

    Google Scholar 

  57. V. Šepelák, M. Zatroch, K. Tkáčová, P. Petrovic, S. Wißmann, and K. D. Becker, Mater. Sci. Eng. A 226–228, 22 (1997).

    Google Scholar 

  58. V. Šepelák, S. Wißmann, and K. D. Becker, J. Mater. Sci. 33, 2845 (1998).

    Google Scholar 

  59. K. Tkáčová, V. Šepelák, N. Števulová, and V. V. Boldyrev, J. Solid State Chem. 123, 100 (1996).

    Google Scholar 

  60. V. Šepelák, L. Wilde, U. Steinike, and K. D. Becker, Z. Kristallogr. Suppl. 16, 152 (1999).

    Google Scholar 

  61. H. Schmalzried, Chemical Kinetics of Solids (Verlag Chemie, Weinheim, 1995).

    Google Scholar 

  62. P. Druska, D. Chr. Uecker, V. Šepelák, and U. Steinike, Z. Kristallogr. Suppl. 12, 203 (1997).

    Google Scholar 

  63. R. H. Kodama and A. E. Berkowitz, Phys. Rev. B 59, 6321 (1999).

    Google Scholar 

  64. R. H. Kodama, A. E. Berkowitz, E. J. McNiff, and S. Foner, Phys. Rev. Lett. 77, (1996).

  65. D. Lin, A. C. Nunes, C. F. Majkrzak, and A. E. Berkowitz, J. Magn. Magn. Mater. 145, 343 (1995).

    Google Scholar 

  66. M. P. Morales, C. J. Serna, F. Bødker, and S. Mørup, J. Phys. Condens. Matter 9, 5461 (1997).

    Google Scholar 

  67. G. F. Goya and H. R. Rechenberg, J. Magn. Magn. Mater. 203, 141 (1999).

    Google Scholar 

  68. W. Schiessl, W. Potzel, H. Karzel, M. Steiner, G. M. Kalvius, A. Martin, M. K. Krause, I. Halevy, J. Gal, W. Schäfer, G. Will, M. Hillberg, and R. Wäppling, Phys. Rev. B 53, 9143 (1996).

    Google Scholar 

  69. K. Tkáčová, N. Števulová, J. Lipka, and V. Šepelák, Powder Technol. 83, 163 (1995).

    Google Scholar 

  70. Y. T. Qian, R. Kershaw, K. Dwight, and A. Wold, Mater. Res. Bull. 18, 543 (1983).

    Google Scholar 

  71. S. Linderoth, J. Z. Jiang, and S. Mørup, Mater. Sci. Forum 235–238, 205 (1997).

    Google Scholar 

  72. T. Kosmac and T. H. Courtney, J. Mater. Res. 7, 1519 (1992).

    Google Scholar 

  73. W. A. Kaczmarek, I. Onyszkiewicz, and B. W. Ninham, IEEE Trans. Magn. 30, 4725 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šepelák, V., Becker, K.D. Mössbauer Studies in the Mechanochemistry of Spinel Ferrites. Journal of Materials Synthesis and Processing 8, 155–166 (2000). https://doi.org/10.1023/A:1011355908538

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011355908538

Navigation