Skip to main content
Log in

Capillarity-Induced Surface Morphologies

  • Published:
Interface Science

Abstract

Surface energetics is reviewed including expressions for the chemical potential of a curved surface element and the Legendre transform relation between the projected surface free energy as a function of orientation and the Wulff equilibrium shape. A well known equation is derived describing surface evolution by surface diffusion, assuming local equilibrium. Solutions are reviewed including a decaying sinusoid and a developing thermal groove. Breakdown of local equilibrium is considered. The structure, energetics and dynamics of steps on a vicinal surface are discussed. Facet sizes on the Wulff shape and the surface profile at the edge of a facet are related to the step self and interaction free energies respectively. Fourier analysis of step fluctuations is described, revealing the underlying transport processes. Analysis of the decay of a sinusoidal profile on a vicinal surface in terms of step behavior is given. Finally, examples are reviewed of surface evolution below the roughening temperature T R in which case facets move by the lateral spreading of steps. Results differ greatly from those of the continuum theory applicable above T R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Herring, J. Appl. Phys. 21, 301 (1950).

    Google Scholar 

  2. W.W. Mullins, J. Appl. Phys. 30, 77 (1959).

    Google Scholar 

  3. M.Wortis, in Chemistry and Physics of Solid Surfaces, Vol. VII, edited by R.Vanselow and R. Howe (SpringerVerlag, New York, 1988), Vol. 7, p. 367.

    Google Scholar 

  4. A.F. Andreev, Sov. Phys. JETP 53, 1063 (1981).

    Google Scholar 

  5. J.C. Heyraud and J.J. Métois, Surf. Sci. 128, 334 (1983).

    Google Scholar 

  6. C. Herring, in Structure and Properties of Solid Surfaces, edited by R. Gomer and C.S. Smith (University of Chicago Press, 1952), p. 5.

  7. E.D. Wiliams, Surf. Sci. 299/300, 502 (1994).

    Google Scholar 

  8. D.W. Hoffman and J.W. Cahn, Surf. Sci. 31, 368 (1972).

    Google Scholar 

  9. J.W. Cahn and D.W. Hoffman, Acta Met. 22, 1205 (1974).

    Google Scholar 

  10. J.W. Cahn and C.A. Handwerker, Materials Science and Engineering, A162, 83 (1993).

    Google Scholar 

  11. H. van Beijeren and I. Nolden, Topics in Current Physics, Vol. 43: Structure and Dynamics of Surfaces II (Springer Verlag, 1987).

  12. C. Herring, in The Physics of Powder Metallurgy, edited by W.E. Kingston (McGraw-Hill Book Co., New York, 1951).

    Google Scholar 

  13. W.W. Mullins, J. Appl. Phys. 28, 333 (1957).

    Google Scholar 

  14. J.W. Cahn and J.E. Taylor, Acta Met. et Mater. 42, 1045 (1994).

    Google Scholar 

  15. A. Brokman and A.J. Vilenkin, Phys. Rev. B56, 9871 (1997).

    Google Scholar 

  16. W.W. Mullins and P.G. Shewmon, Acta Metall. 7, 163 (1959).

    Google Scholar 

  17. N.A. Gjostein, in Metal Surfaces: Structure, Energetics and Kinetics, edited by W.D. Robertson and N.A. Gjostein (ASM, 1962), p. 99.

  18. J.M. Blakely, Progress in Materials Science 10, 395 (1963).

    Google Scholar 

  19. N.A. Gjostein, in Diffusion (ASM Seminar, Metals Park, OH, 1973), p. 241.

    Google Scholar 

  20. H.P. Bonzel, in Surface Physics of Materials, edited by J.M. Blakely (Academic Press, 1975), Vol. 2, p. 279.

    Google Scholar 

  21. Landolt-Börnstein, New Series Group IIIc. Crystals and Solid State Physics, Vol. 26: Diffusion in Metals and Alloys (1990), Ch. 13.

  22. W.W. Mullins, Trans. AIME 218, 354 (1960).

    Google Scholar 

  23. W.W. Mullins, Acta Met. 6, 414 (1958).

    Google Scholar 

  24. V.Y. Aristov, V.Y. Fradkov, and L.S. Shvindlerman, Phys. Met. Metall. 45(5), 83 (1978).

    Google Scholar 

  25. A. Brokman, R. Kris, W.W. Mullins, and A.J. Vilenkin, Scripta met et mater. 32, 1341 (1995).

    Google Scholar 

  26. H.J. Frost, C.V. Thompson, and D.T. Walton, Acta Metall. 40, 779 (1992).

    Google Scholar 

  27. J.W. Cahn and O. Penrose, “Theory of Curvature and Grooving Effects in DIGM” preprint.

  28. S.A. Hackney and G.C. Ojard, Scripta Metall. 22, 1731 (1988).

    Google Scholar 

  29. S.A. Hackney, Scripta Metall. 22, 1273 (1988).

    Google Scholar 

  30. F.Y. Génin, W.W. Mullins, and P. Wynblatt, Acta Metall. et Mater. 40, 3239 (1992).

    Google Scholar 

  31. F.A. Nichols and W.W. Mullins, J. Appl. Phys. 36, 1826 (1965).

    Google Scholar 

  32. F.A. Nichols and W.W. Mullins, Trans. AIME 233, 1840 (1965).

    Google Scholar 

  33. R.F. Sekerka and T.F. Marinis, in Proceedings International Conference on Solid-State Phase Transformations, TMS-AIME, Warrendale, PA (1983), p. 67.

    Google Scholar 

  34. A. Piquet et Uzan in Structure et Propriétés des Solides; Colloques Internationaux du Centre National de la Recherche Scientifique No. 187 Paris (1969).

  35. W. Zhang and J.H. Schneibel, Computational Materials Science 3, 347 (1995).

    Google Scholar 

  36. D.J. Srolovitz and S.A. Safrin, J. Appl. Phys. 60, 247 (1986).

    Google Scholar 

  37. D.J. Srolovitz and S.A. Safrin, J. Appl. Phys. 60, 255 (1986).

    Google Scholar 

  38. D.A. Smith, private communication.

  39. K.T. Miller, F.F. Lang, and D.B. Marshall, J. Mater. Res. 5, 151 (1990).

    Google Scholar 

  40. R. Brandon and F.J. Bradshaw, Royal Aircraft Establishment Tech. Rep. No. 66095 (1966).

  41. E.E. Gruber and W.W. Mullins, J. Phys. Chem. Solids 67, 875 (1967).

    Google Scholar 

  42. C. Jayaprakash, C. Rottman, and W.F. Saam, Phys. Rev. B 30, 6549 (1984).

    Google Scholar 

  43. H.P. Bonzel and A. Emundts, Phys. Rev. Lett. 84, 5804 (2000).

    Google Scholar 

  44. A. Emundts, H.P. Bonzel, P. Wynblatt, K. Th¨urmer, J. Reutt-Robey, and E.D. Williams, to be published.

  45. E.D. Williams and N.C. Bartelt, Science 251, 393 (1991).

    Google Scholar 

  46. Z. Toroczkai and E.D. Williams, Phys. Today 24 (Dec. 1999).

  47. H.-C. Jeong and E.D.Williams, Surface Science Reports 34, 171 (1999).

    Google Scholar 

  48. A. Pimpinelli, J. Villain, D.E. Wolf, J.J. M´etois, J.C. Heyraud, I. Elkinani, and G. Uimin, Surf. Sci. 295, 143 (1993).

    Google Scholar 

  49. H. Bonzel and W.W. Mullins, Surface Science 350, 285 (1996).

    Google Scholar 

  50. S.V. Khare and T.L. Einstein, Phys. Rev. B 57, 4782 (1998).

    Google Scholar 

  51. J. Villain and F. Lan¸con. C.R. Acad. Sci. Paris 309, 647 (1989); Phys. Rev. Lett. 64, 293 (1990); See also in Kinetics of Ordering and Growth at Surfaces, edited by M.G. Lagally (Plemum Press, New York, 1990), p. 369.

    Google Scholar 

  52. W.W. Mullins, Phil. Mag. 6, 1313 (1961).

    Google Scholar 

  53. A. Retori and J. Villain, J. Phys. (Paris) 49, 257 (1988).

    Google Scholar 

  54. C. Duport, A. Chame, W.W. Mullins, and J. Villain, J. Phys. I France 6, 1095 (1996).

    Google Scholar 

  55. W.W. Mullins and G.S. Rohrer, J. Am.Ceram. Soc. 83 [1] (2000), p. 214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullins, W. Capillarity-Induced Surface Morphologies. Interface Science 9, 9–20 (2001). https://doi.org/10.1023/A:1011258510496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011258510496

Navigation