Skip to main content
Log in

Genetic engineering of CHO cells producing human interferon-γ by transfection of sialyltransferases

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Natural human interferon-γ (hIFN-γ) contains mainly biantennary complex-type sugar chains. We previously remodeled the branch structures of N-glycans on hIFN-γ in Chinese hamster ovary (CHO) cells by overexpressing UDP-N-acetylglucosamine: α1,6-D-mannoside β1,6-N-acetylglucosaminyltransferase (GnT-V). Normal CHO cells primarily produced hIFN-γ having biantennary sugar chains, whereas a CHO clone, designated IM4/Vh, transfected with GnT-V, primarily produced hIFN-γ having GlcNAcβ1-6 branched triantennary sugar chains when sialylation was incomplete and an increase in poly-N-acetyllactosamine (Galβ1-4GlcNAcβ1-3)n was observed. In the present study, we introduced mouse Galβ1-3/4GlcNAc-R α2,3-sialyltransferase (ST3Gal IV) and/or rat Galβ1-4GlcNAc-R α2,6-sialyltransferase (ST6Gal I) cDNAs into the IM4/Vh cells to increase the extent of sialylation and to examine the effect of sialyltransferase (ST) type on the linkage of sialic acid. Furthermore, we speculated that sialylation extent might affect the level of poly-N-acetyllactosamine. We isolated four clones expressing different levels of α2,3-ST and/or α2,6-ST. The extent of sialylation of hIFN-γ from the IM4/Vh clone was 61.2%, which increased to about 80% in every ST transfectant. The increase occurred regardless of the type of overexpressed ST, and the proportion of α2,3- and α2,6-sialic acid corresponded to the activity ratio of α2,3-ST to α2,6-ST. Furthermore, the proportion of N-glycans containing poly-N-acetyllactosamine was significantly reduced (less than 10%) in the ST transfectants compared with the parental IM4/Vh clone (22.9%). These results indicated that genetic engineering of STs is highly effective for regulating the terminal structures of sugar chains on recombinant proteins in CHO cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukuta K, Abe R, Yokomatsu T, Kono N, Asanagi M, Omae F, Minowa MT, Takeuchi M, Makino T, Remodeling of sugar chain structures of human interferon-γ, Glycobiology 10, 421–30 (2000).

    PubMed  Google Scholar 

  2. Santell L, Ryll T, Etcheverry T, Santoris M, Dutina G, Wang A, Gunson J, Warner TG, Aberrant metabolic sialylation of recombinant proteins expressed in Chinese hamster ovary cells in high productivity cultures, Biochem Biophys Res Commun 258, 132–7 (1999).

    PubMed  Google Scholar 

  3. Ashwell G, Harford J, Carbohydrate-specific receptors of the liver, Annu Rev Biochem 51, 531–54 (1982).

    PubMed  Google Scholar 

  4. Cole ES, Nichols EH, Poisson L, Harnois ML, Livingston DJ, In vivo clearance of tissue plasminogen-activator - the complex role of sites of glycosylation and level of sialylation, Fibrinolysis 7, 15–22 (1993).

    Google Scholar 

  5. Takeuchi M, Takasaki S, Miyazaki H, Kato T, Hoshi S, Kochibe N, Kobata A, Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells, J Biol Chem 263, 3657–63 (1988).

    PubMed  Google Scholar 

  6. Bergwerff AA, van Oostrum J, Asselbergs FA, Burgi R, Hokke CH, Kamerling JP, Vliegenthart JF, Primary structure of N-linked carbohydrate chains of a human chimeric plasminogen activator K2tu-PA expressed in Chinese hamster ovary cells, Eur J Biochem 212, 639–56 (1993).

    PubMed  Google Scholar 

  7. Conradt HS, Egge H, Peter-Katalinic J, Reiser W, Siklosi T, Schaper K, Structure of the carbohydrate moiety of human interferon-β secreted by a recombinant Chinese hamster ovary cell line, J Biol Chem 262, 14600–5 (1987).

    PubMed  Google Scholar 

  8. Watson E, Bhide A, van Halbeek H, Structure determination of the intact major sialylated oligosaccharide chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells, Glycobiology 4, 227–37 (1994).

    PubMed  Google Scholar 

  9. Svensson EC, Soreghan B, Paulson JC, Organization of the β-galactoside α2,6–sialyltransferase gene. Evidence for the transcriptional regulation of terminal glycosylation, J Biol Chem 265, 20863–8 (1990).

    PubMed  Google Scholar 

  10. Yousefi S, Higgins E, Daoling Z, Pollex-Kruger A, Hindsgaul O, Dennis JW, Increased UDP-GlcNAc: Galβ1–3GalNAc-R (GlcNAc to GalNAc) β-1,6–N-acetylglucosaminyltransferase activity in metastatic murine tumor cell lines. Control of polylactosamine synthesis, J Biol Chem 266, 1772–82 (1991).

    PubMed  Google Scholar 

  11. Sasaki H, Bothner B, Dell A, Fukuda M, Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA, J Biol Chem 262, 12059–76 (1987).

    PubMed  Google Scholar 

  12. Yamashita K, Ohkura T, Tachibana Y, Takasaki S, Kobata A, Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis, J Biol Chem 259, 10834–40 (1984).

    PubMed  Google Scholar 

  13. Yoshima H, Matsumoto A, Mizuochi T, Kawasaki T, Kobata A, Comparative study of the carbohydrate moieties of rat and human plasma α1–acid glycoproteins, J Biol Chem 256, 8476–84 (1981).

    PubMed  Google Scholar 

  14. Pierce M, Arango J, Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri-and tetraantennary glycopeptides containing [GlcNAcβ(1,6)Man-α(1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells, J Biol Chem 261, 10772–7 (1986).

    PubMed  Google Scholar 

  15. van den Eijnden DH, Koenderman AHL, Schiphorst WECM, Biosynthesis of blood group i-active polylactosaminoglycans. Partial purification and properties of an UDP-GlcNAc: N-acetyllactosaminide β1→3–N-acetylglucosaminyltransferase from Novikoff tumor cell ascites fluid, J Biol Chem 263, 12461–71 (1988).

    PubMed  Google Scholar 

  16. Nabi IR, Dennis JW, The extent of polylactosamine glycosylation of MDCK LAMP-2 is determined by its Golgi residence time, Glycobiology 8, 947–53 (1998).

    PubMed  Google Scholar 

  17. Nabi IR, Rodriguez-Boulan E, Increased LAMP-2 polylactosamine glycosylation is associated with its slower Golgi transit during establishment of a polarized MDCK epithelial monolayer, Mol Biol Cell 4, 627–35 (1993).

    PubMed  Google Scholar 

  18. Wang W-C, Lee N, Aoki D, Fukuda MN, Fukuda M, The poly-N-acetyllactosamines attached to lysosomal membrane glycoproteins are increased by the prolonged association with the Golgi complex, J Biol Chem 266, 23185–90 (1991).

    PubMed  Google Scholar 

  19. Ujita M, McAuliffe J, Hindsgaul O, Sasaki K, Fukuda MN, Fukuda M, Poly-N-acetyllactosamine synthesis in branched N-glycans is controlled by complemental branch specificity of i-extension enzyme and β1,4–galactosyltransferase I, J Biol Chem 274, 16717–26 (1999).

    PubMed  Google Scholar 

  20. Berger EG, Hesford FJ, Localization of galactosyl-and sialyltransferase by immunofluorescence: evidence for different sites, Proc Natl Acad Sci USA 82, 4736–9 (1985).

    PubMed  Google Scholar 

  21. Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G, Nilsson T, Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides, J Cell Sci 108, 1617–27 (1995).

    PubMed  Google Scholar 

  22. Roth J, Subcellular organization of glycosylation in mammalian cells, Biochim Biophys Acta 906, 405–36 (1987).

    PubMed  Google Scholar 

  23. Roth J, Taatjes DJ, Lucocq JM, Weinstein J, Paulson JC, Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation, Cell 43, 287–95 (1985).

    PubMed  Google Scholar 

  24. Berger EG, Mandel T, Schilt U, Immunohistochemical localization of galactosyltransferase in human fibroblasts and Hela cells, J Histochem Cytochem 29, 364–70 (1981).

    PubMed  Google Scholar 

  25. Nilsson T, Pypaert M, Hoe MH, Slusarewicz P, Berger EG, Warren G, Overlapping distribution of two glycosyltransferases in the Golgi apparatus of Hela cells, J Cell Biol 120, 5–13 (1993).

    PubMed  Google Scholar 

  26. Roth J, Berger EG, Immunocytochemical localization of galactosyltransferase in Hela cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae, J Cell Biol 92, 223–9 (1982).

    Google Scholar 

  27. Tsuji S, Datta AK, Paulson JC, Systematic nomenclature for sialyltransferases, Glycobiology 6, 7:v–vii (1996).

    Google Scholar 

  28. Kono M, Ohyama Y, Lee Y-C, Hamamoto T, Kojima N, Tsuji S, Mouse β-galactoside α2,3–sialyltransferases: comparison of in vitro substrate specificities and tissue specific expression, Glycobiology 7, 469–79 (1997).

    PubMed  Google Scholar 

  29. Weinstein J, Lee EU, McEntee K, Lai P-H, Paulson JC, Primary structure of β-galactoside α2,6–sialyltransferase. Conversion of membrane-bound enzyme to soluble forms by cleavage of the NH2-terminal signal anchor, J Biol Chem 262, 17735–43 (1987).

    PubMed  Google Scholar 

  30. Niwa H, Yamamura K, Miyazaki J, Efficient selection for highexpression transfectants with a novel eukaryotic vector, Gene 108, 193–9 (1991).

    PubMed  Google Scholar 

  31. Kuraya N, Hase S, Release of O-linked sugar chains from glycoproteins with anhydrous hydrazine and pyridylamination of the sugar chains with improved reaction conditions, J Biochem 112, 122–6 (1992).

    PubMed  Google Scholar 

  32. Weikert S, Papac D, Briggs J, Cowfer D, Tom S, Gawlitzek M, Lofgren J, Mehta S, Chisholm V, Modi N, Eppler S, Carroll K, Chamow S, Peers D, Berman P, Krummen L, Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins, Nature Biotechnol 17, 1116–21(1999).

    Google Scholar 

  33. Lee EU, Roth J, Paulson JC, Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of β-galactoside α2,6–sialyltransferase, J Biol Chem 264, 13848–55 (1989).

    PubMed  Google Scholar 

  34. Minch SL, Kallio PT, Bailey JE, Tissue plasminogen activator coexpressed in Chinese hamster ovary cells with α(2,6)-sialyltransferase contains NeuAc α(2,6)Gal β(1,4)Glc-N-AcR linkages, Biotechnol Prog 11, 348–51 (1995).

    PubMed  Google Scholar 

  35. Zhang X, Lok SHL, Kon OL, Stable expression of human α-2,6–sialyltransferase in Chinese hamster ovary cells: functional consequences for human erythropoietin expression and bioactivity, Biochim Biophys Acta 1425, 441–52 (1998).

    PubMed  Google Scholar 

  36. Bragonzi A, Distefano G, Buckberry LD, Acerbis G, Foglieni C, Lamotte D, Campi G, Marc A, Soria MR, Jenkins N, Monaco L, A new Chinese hamster ovary cell line expressing α2,6–sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins, Biochim Biophys Acta 1474, 273–82 (2000).

    PubMed  Google Scholar 

  37. Monaco L, Marc A, Eon-Duval A, Acerbis G, Distefano G, Lammotte D, Engasser J-M, Soria M, Jenkins N, Genetic engineering of α2,6–sialyltransferase in recombinant CHO cells and its effects on the sialylation of recombinant interferon-γ, Cytotechnology 22, 197–203 (1996).

    Google Scholar 

  38. Joziasse DH, Schiphorst WECM, Van den Eijnden DH, Van Kuik JA, Van Halbeek H, Vliegenthart JFG, Branch specificity of bovine colostrum CMP-sialic acid: Galα1→4GlcNAc-R α2→6–sialyltransferase. Sialylation of bi-, tri-, and tetraantennary oligosaccharides and glycopeptides of the N-acetyllactosamine type, J Biol Chem 262, 2025–33 (1987).

    PubMed  Google Scholar 

  39. Nemansky M, Schiphorst WECM, Van den Eijnden DH, Branching and elongation with lactosaminoglycan chains of N-linked oligosaccharides result in a shift toward termination with α2→3–linked rather than with α2→6–linked sialic acid residues, FEBS Lett 363, 280–4 (1995).

    PubMed  Google Scholar 

  40. Hummel M, Hedrich HC, Hasilik A, Elongation of N-acetyllactosamine repeats in diantennary oligosaccharides, Eur J Biochem 245, 428–33 (1997).

    PubMed  Google Scholar 

  41. Koma M, Miyagawa S, Honke K, Ikeda Y, Koyota S, Miyoshi S, Matsuda H, Tsuji S, Shirakura R, Taniguchi N, Reduction of the major xenoantigen on glycosphingolipids of swine endothelial cells by various glycosyltransferases, Glycobiology 10, 745–51 (2000).

    PubMed  Google Scholar 

  42. Sandrin M, Fodor WL, Mouhtouris E, Osman N, Cohney S, Rollins SA, Guilmette ER, Setter E, Squinto S, McKenzie IFC, Enzymatic remodelling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytosis, Nature Med 1, 1261–7 (1995).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuta, K., Yokomatsu, T., Abe, R. et al. Genetic engineering of CHO cells producing human interferon-γ by transfection of sialyltransferases. Glycoconj J 17, 895–904 (2000). https://doi.org/10.1023/A:1010977431061

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010977431061

Navigation