Skip to main content
Log in

Transient Focal Cerebral Ischemia Down-Regulates Glutamate Transporters GLT-1 and EAAC1 Expression in Rat Brain

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Transient focal cerebral ischemia leads to extensive excitotoxic neuronal damage in rat cerebral cortex. Efficient reuptake of the released glutamate is essential for preventing glutamate receptor over-stimulation and neuronal death. Present study evaluated the expression of the glial (GLT-1 and GLAST) and neuronal (EAAC1) subtypes of glutamate transporters after transient middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia in rats. Between 24h to 72h of reperfusion after transient MCAO, GLT-1 and EAAC1 protein levels decreased significantly (by 36% to 56%, p < 0.05) in the ipsilateral cortex compared with the contralateral cortex or sham control. GLT-1 and EAAC1 mRNA expression also decreased in the ipsilateral cortex of ischemic rats at both 24h and 72h of reperfusion, compared with the contralateral cortex or sham control. Glutamate transporter down-regulation may disrupt the normal clearance of the synaptically-released glutamate and may contribute to the ischemic neuronal death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fonnum, F. 1984. Glutamate: A neurotransmitter in mammalian brain. J. Neurochem. 42:1–11.

    Google Scholar 

  2. Kato, H. and Kogure, K. 1999. Biochemical and molecular characteristics of the brain with developing cerebral infarction. Cell. Mol. Neurobiol. 19:93–108.

    Google Scholar 

  3. Lipton, P. 1999. Ischemic cell death in brain neurons. Physiol. Rev. 79:1431–1568.

    Google Scholar 

  4. Kanai, Y. and Hediger, M. A. 1992. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471.

    Google Scholar 

  5. Storck, T., Schulte, S., Hoffman, K., and Stoffel, W. 1992. Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc. Natl. Acad. Sci. USA 89:10,955–10,959.

    Google Scholar 

  6. Pines, G., Danbolt, N. C., Bjoras, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E., and Kanner, B. I. 1992. Cloning and expression of a rat brain L-glutamate transporter. Nature 360:464–467.

    Google Scholar 

  7. Danbolt, N. C., Chaudhry, F. A., Dehnes, Y., Lehre, K. P., Levy, L. M., Ullensvang, K., and Storm-Mathisen, J. 1998. Properties and localization of glutamate transporters. Prog. Brain Res. 116:23–43.

    Google Scholar 

  8. Seal, R. P. and Amara, S. G. 1999. Excitatory amino acid transporters: A family in flux. Ann. Rev. Pharmacol. Toxicol. 39: 431–456.

    Google Scholar 

  9. Kanai, Y., Trotti, D., Nussberger, S., and Hediger, M. A. 1997. The high-affinity glutamate transporter family. Pages 171–213, in Reith, M. E. A. (ed.), Neurotransmitter Transporters: Structure, Function, and Regulation. Humana Press, New Jersey.

    Google Scholar 

  10. Robinson, M. B. 1999. The family of sodium-dependent glutamate transporters: A focus on the GLT-1/EAAT2 subtypes. Neurochem. Int. 33:479–491.

    Google Scholar 

  11. Martin, L. J., Brambrink, A. M., Lehmann, C., Portera-Cailliau, C., Koehler, R., Rothstein, J., and Traystman, R. J. 1997. Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn pig striatum. Ann. Neurol. 42:335–348.

    Google Scholar 

  12. Inage, Y. W., Itoh, M., Wada, K., and Takashima, S. 1998. Expression of two glutamate transporters, GLAST and EAAT4, in the human cerebellum: Their correlation in development and neonatal hypoxic-ischemic damage. J. Neuropathol. Exp. Neurol. 57:554–462.

    Google Scholar 

  13. Rao, V. L. R., Baskaya, M. K., Dogan, A., Rothstein, J. D., and Dempsey, R. J. 1998. Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. J. Neurochem. 70:2020–2027.

    Google Scholar 

  14. Torp, R., Lekieffre, D., Levy, L. M., Haug, F. M., Danbolt, N. C., Meldrum, B. S., and Ottersen, O. P. 1995. Reduced postischemic expression of a glial glutamate transporter, GLT1, in the rat hippocampus. Exp. Brain Res. 103:51–58.

    Google Scholar 

  15. Fujita, H., Sato, K., Wen, T. C., Peng, Y., and Sakanaka, M. 1999. Differential expressions of glycine transporter 1 and three glutamate transporter mRNA in the hippocampus of gerbils with transient forebrain ischemia. J. Cereb. Blood Flow Metab. 19:604–615.

    Google Scholar 

  16. Rao, V. L. R., Rao, A. M., Dogan, A., Bowen, K. K., Hatcher, J., Rothstein, J. D., and Dempsey, R. J. 2000. Glial glutamate transporter GLT-1 down-regulation precedes delayed neuronal death in gerbil hippocampus following transient global cerebral ischemia. Neurochem. Int. 36:531–537.

    Google Scholar 

  17. Rao, V. L. R., Dogan, A., Todd, K. G., Bowen, K. K., Kim, B-T., Rothstein, J. D., and Dempsey, R. J. 2001. Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbated transient focal cerebral ischemia-induced neuronal damage in rat brain. J. Neurosci. 21: 1876–1883.

    Google Scholar 

  18. Rao, V. L. R., Dogan, A., Bowen, K. K., Todd, K. G., and Dempsey, R. J. 2001. Antisense knockdown of the glial glutamate transporter GLT-1 exacerbates hippocampal neuronal damage following traumatic brain injury to rat brain, Eur. J. Neurosci. 13:1–11.

    Google Scholar 

  19. Zea Longa, E., Weinstein, P. R., Carlson, S., and Cummins, R. 1989. Reversible middle cerebral artery occlusion without craniectomy in rat. Stroke 20:84–91.

    Google Scholar 

  20. Dogan, A., Rao, A. M., Hatcher, J., Rao, V. L. R., Baskaya, M. K., and Dempsey, R. J. 1999. Effects of MDL 72527, a specific inhibitor of polyamine oxidase, on brain edema, ischemic injury volume, and tissue polyamine levels in rats after temporary middle cerebral artery occlusion. J. Nuerochem. 72:765–770.

    Google Scholar 

  21. Rao, V. L. R., Dogan, A., Bowen, K. K., and Dempsey, R. J. 2000a. Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death and activation of astrocytes and microglia in rat thalamus, Exp. Neurol. 161:301–314.

    Google Scholar 

  22. Mies, G., Ishimaru, S., Xie, Y., Seo, K., and Hossmann, K. A. 1991. Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J. Cereb. Blood Flow Metab. 11:753–761.

    Google Scholar 

  23. Velier, J. J., Ellison, J. A., Kikly, K. K., Spera, P. A., Barone, F. C., and Feuerstein, G. Z. 1999. Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J. Neurosci. 19:5932–5941.

    Google Scholar 

  24. Swanson, R. A., Liu, J., Miller, J. W., Rothstein, J. D., Farrell, K., and Stein, B. A. 1997. Longuemare MC. Neuronal regulation of glutamate transporter subtype expression in astrocytes. J. Neurosci. 17:932–940.

    Google Scholar 

  25. Duan, S. M., Anderson, C. M., Stein, B. A., and Swanson, R. A. 1999. Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST. J. Neurosci. 19:10193–10200.

    Google Scholar 

  26. Takagi, K., Ginsberg, M. D., Globus, M., Dietrich, W. D., Martinez, E., Kraydieh, S., and Busto, R. 1993. Changes in amino acid neurotransmitters and cerebral blood flow in the ischemic penumbral region following middle cerebral artery occlusion in the rat: Correlation with histopathology. J. Cereb. Blood Flow Metab. 13:575–585.

    Google Scholar 

  27. Tanaka, K., Watase, K., Manabe, T., Yamada, K., Watanabe, M., Takahashi, K., Iwama, H., Nishikawa, T., Ichihara, N., Kikuchi, T., Okuyama, S., Kawashima, N., Hori, S., Takimoto, M., and Wada, K. 1997. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702.

    Google Scholar 

  28. Watase, K., Hashimoto, K., Kano, M., Yamada, K., Watanabe, M., Inoue, Y., Okuyama, S., Sakagawa, T., Ogawa, S., Kawashima, N., Hori, S., Takimoto, M., Wada, K., and Tanaka, K. 1998. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur. J. Neurosci. 10:976–988.

    Google Scholar 

  29. Torp, R., Danbolt, N. C., Babaie, E., Bjoras, M., Seeberg, E., Storm-Mathisen, J., and Ottersen, O. P. 1994. Differential expression of two glial glutamate transporters in the rat brain: An in situ hybridization study. Eur. J. Neurosci. 6:936–942.

    Google Scholar 

  30. Obrenovitch, T. P. 1999. High extracellular glutamate and neuronal death in neurological disorders. Cause, contribution or consequence? Ann. NY Acad. Sci. 890:273–286.

    Google Scholar 

  31. Friedman, L. K., Belayev, L., Alfonso, O. F., and Ginsberg, M. D. 2000. Distribution of glutamate and preproenkephalin messenger RNAs following transient focal cerebral ischemia. Neuroscience 95:841–857.

    Google Scholar 

  32. Kawasaki-Yatsugi, S., Ichiki, C., Yatsugi, S., Takahashi, M., Shimizu-Sasamata, M., Yamaguchi, T., and Minematsu, K. 2000. Neuroprotective effects of an AMPA receptor antagonist YM872 in a rat transient middle cerebral artery occlusion model. Neuropharmacology 39:211–217.

    Google Scholar 

  33. Roettger, V. and Lipton, P. 1996. Mechanism of glutamate release from rat hippocampal slices during in vitro ischemia. Neuroscience 75:677–685.

    Google Scholar 

  34. Rossi, D. J., Oshima, T., and Attwell, D. 2000. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321.

    Google Scholar 

  35. Douen, A. G., Akiyama, K., Hogan, M. J., Wang, F., Dong, L., Chow, A. K., and Hakim, A. 2000. Preconditioning with cortical spreading depression decreases intraischemic cerebral glutamate levels and down-regulates excitatory amino acid transporters EAAT1 and EAAT2 from rat cerebral cortex plasma membranes. J. Neurochem. 75:812–818.

    Google Scholar 

  36. Coccia, C., Ganel, R., and Rothstein, J. D. 1999. GDNF induces an increase in EAAT2 (GLT-1) expression. Soc. Neurosci. Abstr. 25:170.2.

    Google Scholar 

  37. Ganel, R., Coccia, C., Steiner, J., and Rothstein, J. D. 1999. The neuroimmunophilin ligand GPI-1046 induces the expression of glutamate transporter of EAAT2 (GLT-1) subtype. Soc. Neurosci. Abstr. 25:170.1.

    Google Scholar 

  38. Figiel, M. and Engele, J. 2000. Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuron-derived peptide regulating glial glutamate transport and metabolism. J. Neurosci. 20:3596–3605.

    Google Scholar 

  39. Poulsen, D., Maragakis, N. J., Hoke, A., Snyder, E. Y., During, M. J., and Rothstein, J. D. 2000. EAAT2 transfected murine neural stem cells demonstrate glutamate uptake and are capable of engraftment in organotypic spinal cord cultures. Soc. Neurosci. Abstr. 327.11.

    Google Scholar 

  40. Sanchez-Carbente, M. D. and Massieu, L. 1999. Transient inhibition of glutamate uptake in vivo induces neurodegeneration when energy metabolism is impaired. J. Neurochem. 72: 129–138.

    Google Scholar 

  41. Massieu, L. and Gomez-Raman, N. 1999. Glycolysis inhibition exacerbates neuronal damage induced by glutamate transporter inhibition in vivo. J. Neurochem. 73 (Suppl.):S96D.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghavendra Rao, V.L., Bowen, K.K. & Dempsey, R.J. Transient Focal Cerebral Ischemia Down-Regulates Glutamate Transporters GLT-1 and EAAC1 Expression in Rat Brain. Neurochem Res 26, 497–502 (2001). https://doi.org/10.1023/A:1010956711295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010956711295

Navigation