Skip to main content
Log in

Influence of hyper‐ and hypothyroidism on lipid peroxidation, unsaturation of phospholipids, glutathione system and oxidative damage to nuclear and mitochondrial DNA in mice skeletal muscle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

While the biochemical literature on free radical metabolism is extensive, there is little information on the endocrine control of tissue oxidative stress, and in the case of thyroid hormones it is mainly limited to liver tissue and to short‐term effects on a few selected biochemical parameters. In this investigation, chronic hypothyroidism and hyperthyroidism were successfully induced in mice, and various oxidative‐stress‐related parameters were studied in skeletal muscle. In vivo and in vitro lipid peroxidation significantly increased in hyperthyroidism and did not change in the hypothyroid state. The fatty acid composition of the major phospholipid classes was affected by thyroid hormones, leading to a significant decrease in total fatty acid unsaturation both in hypothyroid and hyperthyroid muscle in phosphatidylcholine and phosphatidylethanolamine fractions. In cardiolipin, however, the double bond content significantly increased as a function of thyroid status, leading to a 2.7 fold increase in the peroxidizability index from euthyroid to hyperthyroid muscle. Cardiolipin content was also directly and significantly related to thyroid state across the three groups. Glutathione system was not modified by thyroid state. The oxidative damage marker 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine did not change in mitochondrial DNA, and decreased in genomic DNA both in hypothyroid and hyperthyroid muscle. The results indicate that chronic alterations in thyroid status specially affect oxidative damage to lipids in skeletal muscle, with a probably stronger effect on mitochondrial membranes, whereas the cytosolic redox potential and DNA are better protected possibly due to homeostatic compensatory reactions on the long‐term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fernández V, Barrientos X, Kipreos K, Valenzuela A, Videla LA: Superoxide radical generation, NADPH oxidase activity, and cytochrome P-450 content of rat liver microsomal fractions in an experimental hyperthyroid state: Relation to lipid peroxidation. Endocrinology 117: 496–501, 1985

    Article  PubMed  Google Scholar 

  2. Fernández V, Videla LA: Hepatic glutathione biosynthetic capacity in hyperthyroid rats. Toxicol Lett 89: 85–89, 1996

    Article  PubMed  Google Scholar 

  3. Troncoso P, Smok G, Videla LA: Potentiation of ischemia-reperfusion liver injury by hyperthyroidism in the rat. Free Rad Biol Med 23: 19–25, 1997

    Article  CAS  PubMed  Google Scholar 

  4. Huh K, Kwon TH, Kim JS, Park JM: Role of the hepatic xanthine oxidase in thyroid dysfunction: Effect of thyroid hormones in oxidative stress in rat liver. Arch Pharm Res 21: 236–240, 1988

    Article  Google Scholar 

  5. Guerrero A, Pamplona R, Portero-Otín M, Barja G, López-Torres M: Effect of thyroid status on lipid composition and peroxidation in the mouse liver. Free Rad Biol Med 26: 73–80, 1999

    Article  CAS  PubMed  Google Scholar 

  6. Pereira B, Costa Rosa LFBP, Safi DA, Bechara EJH: Control of superoxide dismutase, catalase and glutathione peroxidase activities in rat lymphoid organs by thyroid hormones. J Endocrinol 140: 73–77, 1994

    Article  CAS  PubMed  Google Scholar 

  7. Venditti P, Balestrieri M, Meo SD, De Leo T: Effect of thyroid state on lipid peroxidation, antioxidant defences, and susceptibility to oxidative stress in rat tissues. J Endocrinol 155: 151–157, 1997

    Article  CAS  PubMed  Google Scholar 

  8. Hoch FL: Lipids and thyroid hormones. Progr Lipid Res 27: 199–270, 1988

    Article  CAS  Google Scholar 

  9. Hoch FL: Cardiolipis and membrane function. Biochem Biophys Acta 1113: 71–133, 1992

    CAS  PubMed  Google Scholar 

  10. Tapia G, Cornejo P, Fernández V, Videla LA: Protein oxidation in thyroid hormone-induced liver oxidative stress: Relation to lipid peroxidation. Toxicol Lett 106: 209–214, 1999

    Article  CAS  PubMed  Google Scholar 

  11. Pamplona R, Portero-Otín M, Riba D, Ruiz C, Bellmunt MJ, Requena JR, Thorpe S, Baynes JW, Romero M, López-Torres M, Barja G: Thyroid status modulates glycoxidative and lipoxidative modification of tissue proteins. Free Rad Biol Med 27: 901–910, 1999

    Article  CAS  PubMed  Google Scholar 

  12. Smith L: Spectrophotometric assay of cytochrome oxidase. In: D. Gigk (ed). Methods of Biochemical Analysis. Wiley-Interscience, New York, 1955, pp 427–434

    Chapter  Google Scholar 

  13. Folch J, Lees M, Sloane-Stanley GM: A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497–509, 1957

    CAS  PubMed  Google Scholar 

  14. Uchiyama M, Mihara M: Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86: 271–278, 1978

    Article  CAS  PubMed  Google Scholar 

  15. Tietze F: Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione; applications to mammalian blood and other tissues. Anal Biochem 27: 502–522, 1969

    Article  CAS  PubMed  Google Scholar 

  16. Sacchetta P, Di Cola D, Federici G: Alkaline hydrolysis of N-ethylmaleimide allows a rapid assay of glutathione disulphide in biological samples. Anal Biochem 154: 205–208, 1986

    Article  CAS  PubMed  Google Scholar 

  17. Loft S, Poulsen HE: Markers of oxidative damage to DNA: Antioxidants and molecular damage. Meth Enzymol 300: 166–184, 1999

    Article  CAS  PubMed  Google Scholar 

  18. Latorre A, Moya A, Ayala A: Evolution of mitochondrial DNA in Drosophila suboscura. Proc Natl Acad Sci USA 83: 8649–8653, 1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Asunción JG, Millan A, Pla R, Bruseghini L, Esteras A, Pallardo FV, Sastre J, Viña J: Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 10: 333–338, 1996

    PubMed  Google Scholar 

  20. Barja G, Herrero A: Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14: 312–318, 2000

    CAS  PubMed  Google Scholar 

  21. Asayama K, Dobashi K, Hayashibe H, Megata Y, Kato K: Lipid peroxidation and free radical scavengers in thyroid dysfunction in the rat: A possible mechanism of injury to heart and skeletal muscle in hyperthyroidism. Endocrinology 121: 2112–2118, 1987

    Article  CAS  PubMed  Google Scholar 

  22. Asayama K, Kato K: Oxidative muscular injury and its relevance to hyperthyroidism. Free Rad Biol Med 8: 293–303, 1990

    Article  CAS  PubMed  Google Scholar 

  23. Woeber KA: Thyrotoxicosis and the heart. New Engl J Med 327: 94–98, 1992

    Article  CAS  PubMed  Google Scholar 

  24. Callas G, Hayes JR: Alterations in the fine structure of cardiac muscle mitochondria induced by hyperthyroidism. Anat Rec 178: 539–550, 1974

    Article  CAS  PubMed  Google Scholar 

  25. Hatch GM: Regulation of cardiolipid biosynthesis in the heart. Mol Cell Biochem 159: 139–148, 1996

    Article  CAS  PubMed  Google Scholar 

  26. Zaiton Z, Merican Z, Khalid BA, Mohamed JB, Baharom S: The effects of propanolol on skeletal muscle contraction, lipid peroxidation products and antioxidant activity in experimental hyperthyroidism. Gen Pharmacol 24: 195–199

  27. Asayama K, Dobashi K, Hayabashibe H, Kato K: Vitamin E protects against thyroxine-induced acceleration of lipid peroxidation in cardiac and skeletal muscles in rats. J Nutr Sci Vitaminol 35: 407–418, 1989

    Article  CAS  PubMed  Google Scholar 

  28. Teare JP, Greenfield SM, Marway JS, Preedy VR, Punchard NA, Peters TJ, Thompson RPH: Effect of thyroidectomy and adrenalectomy on changes in liver gluthathione and malondialdehyde levels after acute ethanol injection. Free Rad Biol Med 14: 655–660, 1993

    Article  CAS  PubMed  Google Scholar 

  29. Lissi EA, Salim-Hanna M, Sir T, Videla LA: Is spontaneous urinary visible chemiluminescence a reflection of in vivo oxidative stress? Free Rad Biol Med 12: 317–322, 1992

    Article  CAS  PubMed  Google Scholar 

  30. Hoch FL: Minireview: Cardiolipids and mitochondrial proton-selective leakage. J Bioenerg Biomembr 30: 511–532, 1998

    Article  CAS  PubMed  Google Scholar 

  31. Bezard J, Blond JP, Bernard A, Clouet P: The metabolism and availability of essential fatty acids in animal and human tissues. Reprod Nutr Dev 34: 539–568, 1994

    Article  CAS  PubMed  Google Scholar 

  32. Babenko NA, Kavok NS: The role of thyroid hormones in regulating the activity of phospholipases A1 and A2 in liver cells and nuclei from rats of varying ages. Biokhimiia 59: 1130–1139, 1994

    CAS  PubMed  Google Scholar 

  33. Mutter T, Dolinsky VW, Ma BJ, Taylor WA, Hatch GM: Thyroxine regulation of monolysocardiolipid acyltransferase activity in rat heart. Biochem J 346: 403–406, 2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tyler D: In: The Mitochondrion in Health and Disease. VCH Publishers, New York, 1992, pp 183–188

    Google Scholar 

  35. Filser N, Margue C, Richter C: Quantification of wild-type mitochondrial DNA and its 4.8-kb deletion in rat organs. Biochem Biophys Res Commun 233: 102–107, 1997

    Article  CAS  PubMed  Google Scholar 

  36. Yamaguchi R, Hirano T, Asami S, Sugita A, Kasai H: Increase in the 8-hydroxyguanine repair activity in the rat kidney after the administration of a renal carcinogen, ferric nitriloacetate. Environ Health Perspect 104: 651–653, 1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Souza-Pinto NC, Croteau DL, Hudson EK, Hansford RG, Bohr VA: Age-associated increase in 8-oxo-deoxyguanosine glycosylase/AP lyase activity in rat mitochondria. Nucleic Acids Res 27: 1935–1942, 1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Radák Z, Kaneko T, Tahara S, Nakamoto H, Ohno H, Sasvári M, Nyakas C, Goto S: The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: Evidence for beneficial outcomes. Free Rad Biol Med 27: 69–74, 1999

    Article  PubMed  Google Scholar 

  39. Bohr V, Anson RM: Mitochondrial DNA repair pathways. J Bioenerg Biomembr 31: 391–398, 1999

    Article  CAS  PubMed  Google Scholar 

  40. López-Torres M, Romero M, Barja G: Effect of thyroid hormones on mitochondrial oxygen free radical production and DNA oxidative damage in the rat heart. Mol Cell Endocrinol 168: 127–134, 2000

    Article  PubMed  Google Scholar 

  41. Draper HH, Agarwal S, Nelson DEV, Wee JJ, Ghoshal AK, Farber E: Effects of peroxidative stress and age on the concentration of a deoxyguanosine-malondialdehyde adduct in rat DNA. Lipids 30: 959–961, 1995

    Article  CAS  PubMed  Google Scholar 

  42. Priemé H, Loft S, Nyyssönen K, Salonen JT, Poulsen HE: No effect of supplementation with vitamin E, ascorbic acid, or coenzyme Q10 on oxidative DNA damage estimated by 8-oxo-7,8-dihydro-2′-deoxyguanosine excretion in smokers. Am J Clin Nutr 65: 503–507, 1997

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gredilla, R., López Torres, M., Portero‐Otín, M. et al. Influence of hyper‐ and hypothyroidism on lipid peroxidation, unsaturation of phospholipids, glutathione system and oxidative damage to nuclear and mitochondrial DNA in mice skeletal muscle. Mol Cell Biochem 221, 41–48 (2001). https://doi.org/10.1023/A:1010930110382

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010930110382

Navigation