Skip to main content
Log in

Cytokinin synthesis is higher in the Arabidopsis amp1 mutant

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cytokinins are involved in plant cell proliferation leading to plant growth and morphogenesis. Earlier we described a mutant of Arabidopsis thaliana, amp1, that had five times higher levels of cytokinin and had a number of pleiotropic phenotypes, including increased cell proliferation and de-etiolated growth in the dark. While these phenotypes were correlated with higher levels of cytokinin, the actual mechanism of how cytokinin is elevated was not elucidated before. In order to understand if the increased cytokinin is a result of increased biosynthesis or decreased degradation we have compared the synthesis of cytokinins from radiolabelled adenine and the degradation of zeatin ribosides and other cytokinins between amp1 and wild type plants. The degradation of the hormone is not affected in the mutant but there is a 4 to 6 fold increase in cytokinin synthesis compared to the wild type. Because the amp1 mutant is recessive we hypothesise that the AMP1 product negatively regulates cytokinin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chaudhury A.M., Letham D.S., Craig S. and Dennis E.S. 1993. amp1-a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J. 4: 907-916.

    Google Scholar 

  • Mordhorst A.P., Voerman K.J., Hartog V.M., Meijer E.A., van Went J., Koornee M. et al. 1998. Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 149: 549-563.

    Google Scholar 

  • Chen C.-M. and Ertl J.R. 1994. Cytokinin biosynthetic enzymes in plants and slime mold. In: Mok D.W.S. and Mok M.C. (eds), Cytokinins: Chemistry, Activity, and Function. CRC Press, Boca Raton, FL, pp. 81-85.

    Google Scholar 

  • Prinsen E., Redig P., Strnad M., Galis I., Van Dongen W. and Van Onckelen H. 1995. Quantifying phytohormones in transformed plants. Methods Mol. Biol. 44: 245-262.

    Google Scholar 

  • Mok D.W.S. and Martin R.C. 1994. Cytokinin metabolic enzymes. In: Mok D.W.S. and Mok M.C. (eds), Cytokinins: Chemistry, Activity, and Function. CRC Press, Boca Raton, FL, pp. 113-123.

    Google Scholar 

  • Letham D.S. and Palni L.M.S. 1983. The biosynthesis and metabolism of cytokinins. Ann. Rev. Plant Physiol. 34: 163-197.

    Google Scholar 

  • Martin R.C., Mok M.C. and Mok, D.W. 1999. Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc. Natl. Acad. Sci. USA 96: 284-289.

    Google Scholar 

  • Brzobohaty B., Moore I., Kristoffersen P., Bako L., Campos N., Schell J. et al. 1993. Release of active cytokinin by a β-glucosidase localized to the maize root meristem. Science 262: 1051-1054.

    Google Scholar 

  • Houba-Hérin N., Pethe C., d'Alayer J. and Laloue M. 1999. Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J. 17: 615-626.

    Google Scholar 

  • Morris R.O., Bilyeu K.D., Laskey J.G. and Cheikh, N. 1999. Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem. Biophys. Res. Com. 255: 328-333.

    Google Scholar 

  • Letham D.S., Singh S. and Willcocks, D. 1992. Reversed phase thin layer chromatographic methods for separation of cytokinins. Phytochem Analysis 3: 218-222.

    Google Scholar 

  • Palni L.M.S., Palmer M.V. and Letham D.S. 1984. The stability and biological activity of cytokinin metabolites in soybean callus tissue. Planta 160: 242-249.

    Google Scholar 

  • Young H., Letham D.S., Hocart C.H. and Eickholzer J.V. 1990. Synthesis of radioactive zeatin riboside and related compounds by alkylation of purine moieties. Phytochemistry 29: 385-386.

    Google Scholar 

  • Zhang R. and Letham D.S. 1990. Cytokinin translocation and metabolism in lupin species. III. Translocation of xylem cytokinin into the seeds of lateral shoots of Lupinus angustifolius. Plant Sci. 70: 65-71.

    Google Scholar 

  • Singh S., Letham D.S., Jameson P.E., Zhang R., Parker C.W., Badenoch-Jones J. et al. 1988. Cytokinin biochemistry in relation to leaf senescence IV. Cytokinin metabolism in soybean explants. Plant Physiol. 88: 788-794.

    Google Scholar 

  • Hang J., Letham D.S., Taverner E., Badenoch-Jones J. and Hocart, C. 1995. A procedure for quantification of cytokinins as free bases involving scintillation proximity immunoassay. Physiol. Plant 95: 91-98.

    Google Scholar 

  • Parker C.W. and Letham D.S. 1973. Regulators of cell division in plant tissues XVI Metabolism of zeatin by radish cotyledons and hypocotyls. Planta 114: 199-218.

    Google Scholar 

  • Letham D.S. and Singh S. 1989. Quantification of cytokinin O-glucosides by negative ion mass spectrometry. Plant Physiol. 89: 74-77.

    Google Scholar 

  • Duke C.C., Letham D.S., Parker C.W., MacLeod J.K. and Summons R.E. 1979. The complex of O-glucosyl-zeatin derivatives formed in Populus species. Phytochemistry 18: 819-824.

    Google Scholar 

  • MacLeod J.K., Summons R.E. and Letham D.S. 1976. Mass spectrometry of cytokinin metabolites. Per(trimethylsilyl) and permethyl derivatives of glucosides of zeatin and 6-benzylaminopurine. J. Org. Chem. 41: 3661-3959.

    Google Scholar 

  • Bassil N.V., Mok D.W.S. and Mok M.C. 1993. Partial purification of a cis-trans-isomerase of zeatin from immature seed of Phaseolus vulgaris L. Plant Physiol. 102: 867-872.

    Google Scholar 

  • Palni L.M.S., Horgan R., Darrall N.M., Stuchbury T. and Wareing P.F. 1983. Cytokinin biosynthesis in crown-gall tissue of Vinca rosea: the significance of nucleotides. Planta 159: 50-59.

    Google Scholar 

  • Zhang R., Zhang X., Wang J., Letham D.S., McKinney S.A. and Higgins T.J.V. 1995. The effect of auxin on cytokinin levels and metabolism in transgenic tobacco tissue expressing an ipt gene. Planta 196: 84-94.

    Google Scholar 

  • Nandi S.K., Palni L.M.S., Letham D.S. and Knypl J.S. 1988. The biosynthesis of cytokinins in germinating lupin seeds. J. Exp. Bot. 39: 1649-1665.

    Google Scholar 

  • Hocart C.H and Letham D.S 1990. Biosynthesis of cytokinin in germinating seeds of Zea mays. J. Exp. Bot. 41: 1525-1528.

    Google Scholar 

  • Redig P., Schmülling T. and Van Onckelen H. 1996. Analysis of cytokinin metabolism in ipt transgenic tobacco by liquid chromatography-tandem mass spectrometry. Plant Physiol. 112: 141-148.

    Google Scholar 

  • Motyka V., Faiss M., Strnad M., Kamínek M. and Schmülling T. 1996. Changes in cytokinin content and cytokinin oxidase activity in response to derepression of ipt gene transcription in transgenic tobacco calli and plants. Plant Physiol. 112: 1035-1043.

    Google Scholar 

  • Jameson P.E 1994. Cytokinin metabolism and compartmentation. In: Mok D.W.S. and Mok M.C. (eds), Cytokinins: Chemistry, Activity, and Function. CRC Press, Boca Raton, FL, pp. 113-123.

    Google Scholar 

  • Armstrong D.J. 1994. Cytokinin oxidase and the regulation of cytokinin degradation. In: Mok D.W.S. and Mok M.C. (eds), Cytokinins: Chemistry, Activity, and Function. CRC Press, Boca Raton, FL, pp. 139-154.

    Google Scholar 

  • MacGaw B.A., Horgan R. and Heald J.K. 1985. Cytokinin metabolism and the modulation of cytokinin activity in radish. Phytochemistry 24: 9-13.

    Google Scholar 

  • Letham D.S. and Gollnow B. 1985. Regulators of cell division in plant tissues. Cytokinin metabolism in relation to radish cotyledon expansion and senescence. J. Plant Growth Regul. 4: 129-145.

    Google Scholar 

  • Scott I.M. and Horgan R. 1984. Mass-spectrometric quantification of cytokinin nucleotides and glycosides in tobacco crown-gall tissue. Planta 161: 345-354.

    Google Scholar 

  • Letham D.S., Gollnow B.I. and Parker C.W. 1979. The reported occurrence of 7-glucofuranoside metabolites of cytokinins. Plant Sci. Lett. 15: 217-223.

    Google Scholar 

  • Gawer M., Laloue M., Terrine C. and Guern J. 1977. Metabolism and biological significance of benzyladenine-7-glucoside. Plant Sci. Lett. 8: 267-274.

    Google Scholar 

  • Singh S., Letham D.S. and Palni L.M.S. 1992. Cytokinin biochemistry in relation to leaf senescence. VIII. Translocation, metabolism and biosynthesis of cytokinins in relation to sequential leaf senescence of tobacco. Physiol. Plant 86: 398-406.

    Google Scholar 

  • Laloue M. 1977. Cytokinins: 7-glucosylation is not a prerequisite of the expression of their biological activity. Planta 134: 273-275.

    Google Scholar 

  • Letham D.S., Palni L.M.S., Tao G.Q., Gollnow B.I. and Bates C.M. 1983. Regulators of cell division in plant tissues. XXIX. The activities of cytokinin glucosides and alanine conjugates in cytokinin bioassays. J. Plant Growth Regul. 2: 103-115.

    Google Scholar 

  • Palni L.M.S., Palmer M.V. and Letham D.S. 1984. The stability and biological activity of cytokinin metabolites in soybean callus tissue. Planta 160: 242-249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogué, N., Hocart, H., Letham, D.S. et al. Cytokinin synthesis is higher in the Arabidopsis amp1 mutant. Plant Growth Regulation 32, 267–273 (2000). https://doi.org/10.1023/A:1010720420637

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010720420637

Navigation