Skip to main content
Log in

The complex structures of arabinogalactan-proteins and the journey towards understanding function

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Arabinogalactan-proteins (AGPs) are a family of complex proteoglycans found in all higher plants. Although the precise function(s) of any single AGP is unknown, they are implicated in diverse developmental roles such as differentiation, cell-cell recognition, embryogenesis and programmed cell death. DNA sequencing projects have made possible the identification of the genes encoding a large number of putative AGP protein backbones. In contrast, our understanding of how AGPs undergo extensive post-translational modification is poor and it is important to understand these processes since they are likely to be critical for AGP function. Genes believed to be responsible for post-translational modification of an AGP protein backbone, include prolyl hydroxylases, glycosyl transferases, proteases and glycosylphosphatidylinositol-anchor synthesising enzymes. Here we examine models for proteoglycan function in animals and yeast to highlight possible strategies for determining the function(s) of individual AGPs in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, C.M., Wagner, T.A., Perret, M., He, Z.-H., Hed, D. and Kohorn, B.D. 2001. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol. Biol., this issue.

  • Bacic, A., Churms, S.C., Stephen, A.M., Cohen, P.B. and Fincher, G.B. 1987. Fine structure of the arabinogalactan-protein from Lolium multiflorum. Carbohydrate Res. 162: 85–93.

    Google Scholar 

  • Bacic, A., Harris, P.J. and Stone, B.A. 1988. Structure and function of plant cell walls. In: J. Priess (Ed.) The Biochemistry of Plants, Academic Press, New York, pp. 297–371.

    Google Scholar 

  • Bacic, A., Currie, G., Gilson, P., Mau, S.-L., Oxley, D., Schultz, C.J., Sommer-Knudsen, J. and Clarke, A.E. 2000. Structural classes of arabinogalactan-proteins. In: E.A. Nothnagel, A. Bacic and A.E. Clarke (Eds.) Cell and Developmental Biol-ogy of Arabinogalactan-Proteins, Kluwer Academic Publish-ers/ Plenum, Dordrecht, Netherlands/New York, pp. 11–23.

    Google Scholar 

  • Benachour, A., Sipos, G., Flury, I., Reggiori, F., Canivenc-Gansel, E., Vionnet, C., Conzelmann, A. and Benghezal, M. 1999. Deletion of GPI7, a yeast gene required for addition of a side chain to the glycosylphosphatidylinositol (GPI) core structure, affects GPI protein transport, remodeling, and cell wall integrity. J. Biol. Chem. 274: 15251–15261.

    Google Scholar 

  • Benghezal, M., Benachour, A., Rusconi, S., Aebi, M. and Conzelmann, A. 1996. Yeast Gpi8p is essential for GPI anchor attachment onto proteins. EMBO J. 15: 6575–6583.

    Google Scholar 

  • Bouchez, D. and Höfte, H. 1998. Functional genomics in plants. Plant Physiol. 118: 725–732.

    Google Scholar 

  • Breton, C., Bettler, E., Joziasse, D.H., Geremia, R.A. and Imberty, A. 1998. Sequence-function relationships of prokaryotic and eukaryotic galactosyltransferases. J. Biol. Chem. 123: 1000–1009.

    Google Scholar 

  • Burton, R.A., Gibeaut, D.M., Bacic, A., Findlay, K., Roberts, K., Hamilton, A., Baulcombe, D.C. and Fincher, G.B. 2000. Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12: 691–705.

    Google Scholar 

  • Butikofer, P. and Brodbeck, U. 1993. Partial purification and characterization of a (glycosyl) inositol phospholipid-specific phospholipase-C from peanut. J. Biol. Chem. 268: 17794–17802.

    Google Scholar 

  • Carpita, N.C. and Gibeaut, D.M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30.

    Google Scholar 

  • Chapman, A., Fujimoto, K. and Kornfield, S. 1980. The primary glycosylation defect in class-E Thy-1-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-P-mannose. J. Biol. Chem. 255: 4441–4446.

    Google Scholar 

  • Chen, R., Udenfriend, S., Prince, G.M., Maxwell, S.E., Rama-lingam, S., Gerber, L.D., Knez, J. and Medof, M.E. 1996. A defect in glycosylphosphatidylinositol (GPI) transamidase activ-ity in mutant K cells is responsible for their inability to display GPI surface proteins. Proc. Natl. Acad. Sci. USA 93: 2280–2284

    Google Scholar 

  • Cheung, A.Y., Wang, H. and Wu, H.-M. 1995. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82: 383–393.

    Google Scholar 

  • Churms, S.C., Stephen, A.M. and Siddiqui, I.R. 1981. Evidence for repeating sub-units in the molecular structure of the acidic ara-binogalactan from rapeseed (Brassica campestris). Carbohydrate Res. 94: 119–122.

    Google Scholar 

  • Clarke, A.E., Anderson, R.L. and Stone, B.A. 1979. Form and function of arabinogalactans and arabinogalactan-proteins. Phy-tochemistry 18: 521–540.

    Google Scholar 

  • Conzelmann, A., Puoti, A., Lester, R.L. and Desponds, C. 1992. Two different types of lipid moieties are present in glycophosphoinositol-anchored membrane proteins of Saccha-romyces cerevisiae. EMBO J. 11: 457–466.

    Google Scholar 

  • DeGasperi, R., Thomas, L. J., Sugiyama, E., Chang, H-M., Beck, P.J., Orlean, P. et al. 1990. Correction of a defect in mammalian GPI anchor biosynthesis by a transfected yeast gene. Science 250: 988–991.

    Google Scholar 

  • de Nobel, H. and Lipke, P. N. 1994. Is there a role for GPIs in yeast cell-wall assembly? Trends Cell Biol. 4: 42–45.

    Google Scholar 

  • Demura, T. and Fukuda, H. 1994. Novel vascular cell-specific genes whose expression is regulated temporally and spatially during vascular system development. Plant Cell 6: 967–981.

    Google Scholar 

  • Domon, J.-M., Neutelings, G., Roger, D., David, A. and David, H. 2000. A basic chitinase-like protein secreted by embryogenic tissues of Pinus caribaea acts on arabinogalactan proteins extracted from the same cell lines. J. Plant Physiol. 156: 33–39.

    Google Scholar 

  • Dong, L.-Y., Masuda, T., Kawamura, T., Hata, S. and Izui, K. 1998. Cloning, expression, and characterization of a root-form phos-phoenolpyruvate carboxylase from Zea mays: comparison with the C4-form enzyme. Plant Cell Physiol. 39: 865–873.

    Google Scholar 

  • Du, H., Clarke, A. E. and Bacic, A. 1996. Arabinogalactan-proteins: a class of extracellular matrix proteoglycans involved in plant growth and development. Trends Cell Biol. 6: 411–414.

    Google Scholar 

  • Dubois, M., Gillies, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. 1956. Colorimetric method for the determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Google Scholar 

  • Eisenhaber, B., Bork, P., Yuan, Y., Löffler, G. and Eisenhaber, F. 2000. Automated annotation of GPI anchor sites: case study C. elegans. Trends Biochem. Sci. 25: 340–341.

    Google Scholar 

  • Elkins, T., Hortsch, M., Bieber, A.J., Snow, P.M. and Goodman, C.S. 1990. Drosophila fasciclin I is a novel homophilic adhesion molecule that along with fasciclin III can mediate cell sorting. J. Cell Biol. 110: 1825–1832.

    Google Scholar 

  • Epstein, L. and Lamport, D.T.A. 1984. An intramolecular linkage involving isodityrosine in extensin. Phytochemistry 23: 1241–1246.

    Google Scholar 

  • Fankhauser, C., Homans, S.W., Thomas-Oates, J.E., McConville, M.J., Desponds, C., Conzelmann, A. and Ferguson, M.A.J. 1993. Structures of glycosylphosphatidylinositol membrane anchors from Saccharomyces cerevisiae. J. Biol. Chem. 268: 26365–26374.

    Google Scholar 

  • Fincher, G.B., Sawyer, W.H. and Stone, B.A. 1974. Chemical and physical properties of an arabinogalactan-peptide from wheat endosperm. Biochem. J. 139: 535–545.

    Google Scholar 

  • Fincher, G.B., Stone, B.A. and Clarke, A.E. 1983. Arabinogalactan-proteins: structure, biosynthesis and function. Annu. Rev. Plant Physiol. 34: 47–70.

    Google Scholar 

  • Finnegan, P.M., Payne, M.J., Keramidaris, E. and Lukins, H.B. 1991. Characterization of a yeast nuclear gene, AEP2, required for accumulation of mitochondrial mRNA encoding subunit 9 of the ATP synthase. Curr. Genet. 20: 53–61.

    Google Scholar 

  • Flury, I., Benachour, A. and Conzelmann, A. 2000. YLL031c be-longs to a novel family of membrane proteins involved in the transfer of ethanolaminephosphate onto the core structure of gly-cosylphosphatidylinositol anchors in yeast. J. Biol. Chem. 275: 24458–24465.

    Google Scholar 

  • Gane, A.M., Craik, D., Munro, S.L.A., Howlett, G.J., Clarke, A.E. and Bacic, A. 1995. Structural analysis of the carbohydrate moiety of arabinogalactan-proteins from stigmas and styles of Nicotiana alata. Carbohydrate Res. 277: 67–85.

    Google Scholar 

  • Gao, M. and Showalter, A.M. 2000. Immunolocalization of LeAGP-1, a modular arabinogalactan-protein, reveals its developmen-tally regulated expression in tomato. Planta 210: 865–874.

    Google Scholar 

  • Gaynor, E.C., Mondesert, G., Grimme, S.J., Reed, S.I., Orlean, P. and Emr, S.D. 1999. MCD4 encodes a conserved endoplasmic reticulum membrane protein essential for glycosylphosphatidyli-nositol anchor synthesis in yeast. Mol. Biol. Cell 10: 627–648.

    Google Scholar 

  • Gens, J.S., Fujiki, M., Pickard, B.G. 2000. Arabinogalactan protein and wall-associated kinase in a plasmalemmal reticulum with specialized verticles. Protoplasma 212: 115–134.

    Google Scholar 

  • Gilson, P., Gaspar, Y., Oxley, D., Youl, J.J. and Bacic, A. 2001. NaAGP4 is an arabinogalactan-protein whose expression is sup-pressed by wounding and fungal infection in Nicotiana alata. Protoplasma 215: 128–139.

    Google Scholar 

  • Goodrum, L.J., Patel, A., Leykam, J.F. and Kieliszewski, M.J. 2000. Gum arabic glycoprotein contains glycomodules of both extensin and arabinogalactan-glycoproteins. Phytochemistry 54: 99–106.

    Google Scholar 

  • Hamburger, D., Egerton, M. and Riezman, H. 1995. Yeast Gaa1p is required for attachment of a completed GPI anchor onto proteins. J. Cell Biol. 129: 629–639.

    Google Scholar 

  • Harmer, S.L. and Kay, S.A. 2000. Microarrays: determining the balance of cellular transcription. Plant Cell 12: 613–615.

    Google Scholar 

  • Harris, P.J., Henry, R.J., Blakeney, A.B. and Stone, B.A. 1984. An improved procedure for the methylation analysis of oligosaccha-rides and polysaccharides. Carbohydrate Res. 127: 59–73.

    Google Scholar 

  • He, Z.-H., Cheeseman, I., He, D.Z. and Kohorn, B.D. 1999. A clus-ter of five cell wall-associated receptor kinase genes, Wak1–5, are expressed in specific organs of Arabidopsis. Plant Mol. Biol. 39: 1189–1196.

    Google Scholar 

  • Henrissat, B. and Davies, G.J. 2000. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 124: 1515–1519.

    Google Scholar 

  • Hill, K.L., Harfe, B.D., Dobbins, C.A. and L'Hernault, S.W. 2000. dpy-18 encodes an á-subunit of prolyl-4-hydroxylase in Caenorhabditis elegans. Genetics 155: 1139–1148.

    Google Scholar 

  • Hiroi, Y., Komuro, I., Chen, R., Hosoda, T., Mizuno, T., Kudoh, S., Georgescu, S. P., Medof, M.E. and Yazaki, Y. 1998. Molecular cloning of human homolog of yeast GAA1 which is required for attachment of glycosylphosphatidylinositols to proteins. FEBS Lett. 421: 252–258.

    Google Scholar 

  • Holland, N., Holland, D., Helentjaris, T., Dhugga, K.S., Xoconostle-Cazares, B. and Delmer, D.P. 2000. A comparative analysis of the plant cellulose synthase (Cesa) gene family. Plant Physiol. 123: 1313–1323.

    Google Scholar 

  • Hong, Y., Maeda, Y., Watanabe, R., Ohishi, K., Mishkind, M., Riez-man, H. and Kinoshita, T. 1999. Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the first mannose of the glycosylphosphatidylinositol. J. Biol. Chem. 274: 35099–35106.

    Google Scholar 

  • Hong, Y., Maeda, Y., Watanabe, R., Inoue, N., Ohishi, K. and Kinoshita, T.2000. Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol. J. Biol. Chem. 275: 20911–20919.

    Google Scholar 

  • Hooper, N.M. 1997. Glycosyl-phosphatidylinositol anchored mem-brane enzymes. Clin. Chim. Acta 266: 3–12.174

    Google Scholar 

  • Huber, O. and Sumper, M. 1994. Algal-CAMs: isoforms of a cell adhesion molecule in embryos of the alga Vol vox with homology to Drosophila fasciclin I. EMBO J. 13: 4212–4222.

    Google Scholar 

  • Inoue, N., Kinoshita, T., Orii, T. and Takeda, J. 1993. Cloning of a human gene, PIG-F, a component of glycosylphosphatidylinosi-tol anchor biosynthesis, by a novel expression cloning strategy. J. Biol. Chem. 268: 6882–6885.

    Google Scholar 

  • Inoue, N., Watanabe, R., Takeda, J. and Kinoshita, T. 1996. PIG-C, one of the three human genes involved in the first step of gly-cosylphosphatidylinositol biosynthesis is a homologue of Sac-charomyces cerevisiae GPI2. Biochem. Biophys. Res. Commun. 226: 193–199.

    Google Scholar 

  • Iozzo, R.V. 1998. Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 67: 609–652.

    Google Scholar 

  • John, M.E. 1996. Structural characterization of genes correspond-ing to cotton fiber mRNA, E6: reduced E6 protein in transgenic plants by antisense gene. Plant Mol. Biol. 30: 297–306.

    Google Scholar 

  • John, M.E. and Crow, L.J. 1992. Gene expression in cotton (Gossyp-ium hirsutum L.) fiber: cloning of the mRNAs. Proc. Natl. Acad. Sci. USA 89: 5769–5773.

    Google Scholar 

  • Kamitani, T., Chang, H.-M., Rollins, C., Waneck, G.L. and Yeh, E.T.H. 1993. Correction of the class H defect in glycosylphos-phatidylinositol anchor biosynthesis in Ltk– cells by a human cDNA clone. J. Biol. Chem. 268: 20733–20736.

    Google Scholar 

  • Kawagoe, K., Kitamura, D., Okabe, M., Taniuchi, I., Ikawa, M., Watanabe, T., Kinoshita, T. and Takeda, J. 1996. Glycosylphosphatidylinositol-anchor-deficient mice: implica-tions for clonal dominance of mutant cells in paroxysmal noc-turnal hemoglobinuria. Blood 87: 3600–3606.

    Google Scholar 

  • Kieliszewski, M.J. and Lamport, D.T.A. 1994. Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J. 5: 157–172.

    Google Scholar 

  • Kiyohara, H., Zhang, Y.W. and Yamada, H. 1997. Effect of exo-β-D-(1→3)-galactanase digestion on complement activating activity of neutral arabinogalactan unit in a pectic arabinogalac-tan from roots of Angelica acutiloba kitagawa. Carbohydrate Polymers 32: 249–253.

    Google Scholar 

  • Knox, J.P. 1997. The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int. J. Cytol. 171: 79–120.

    Google Scholar 

  • Knox, J.P., Linstead, P.J., Peart, J.M., Cooper, C. and Roberts, K. 1991. Developmentally regulated epitopes of cell surface ara-binogalactan proteins and their relation to root tissue pattern formation. Plant J. 1: 317–326.

    Google Scholar 

  • Kohorn, B.D. 2000. Plasma membrane-cell wall contacts. Plant Physiol. 124: 31–38.

    Google Scholar 

  • Kollár, R., Reinhold, B.B., Petráková, E., Yeh, H.J.C., Ashwell, G., Drgonová, J. et al. 1997. Architecture of the yeast cell wall. J. Biol. Chem. 272: 17762–17775.

    Google Scholar 

  • Kooyman, D.L, Byrne, G.W. and Logan, J.S. 1998. Glycosyl phosphatidylinositol anchor. Exp. Nephrol. 6: 148–151.

    Google Scholar 

  • Kreuger, M. and van Holst, G.-Jv. 1995. Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta 197: 135–141.

    Google Scholar 

  • Kreuger, M. and van Holst, G.-Jv. 1996. Arabinogalactan proteins and plant differentiation. Plant Mol. Biol. 30: 1077–1086.

    Google Scholar 

  • Krysan, P.J., Young, J.C. and Sussman, M.R. 1999. T-DNA as an insertional mutagen in Arabidopsis. Proc. Natl. Acad. Sci. USA 11: 2283–2290.

    Google Scholar 

  • Leidich, S.D., Drapp, D.A. and Orlean, P. 1994. A condition-ally lethal yeast mutant blocked at the first step in glyco-syl phosphatidylinositol anchor synthesis. J. Biol. Chem. 269: 10193–10196.

    Google Scholar 

  • Leidich, S.D., Kostova, Z., Latek, R.R., Costello, L.C., Drapp, D.A., Gray, W. et al. 1995. Temperature-sensitive yeast GPI an-choring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. J. Biol. Chem. 270: 13029–13035.

    Google Scholar 

  • Leidich, S.D. and Orlean, P. 1996. Gpi1, a Saccharomyces cere-visiae protein that participates in the first step in glycosylphos-phatidylinositol anchor synthesis. J. Biol. Chem. 271: 27829–27837.

    Google Scholar 

  • Li, S.-X. and Showalter, A.M. 1996. Cloning and developmental/stress-regulated expression of a gene encoding a tomato arabinogalactan protein. Plant Mol. Biol. 32: 641–652.

    Google Scholar 

  • Lind, J.L., Bönig, I., Clarke, A.E. and Anderson, M.A. 1996. A style-specific 120-kDa glycoprotein enters pollen tubes of Nicotiana alata in vivo. Sex. Plant Reprod. 9: 75–86.

    Google Scholar 

  • Liu, Y.-G., Mitsukawa, N., Oosumi, T. and Whittier, R.F. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457–463.

    Google Scholar 

  • Loopstra, C.A. and Sederoff, R.R. 1995. Xylem-specific gene expression in loblolly pine. Plant Mol. Biol. 27: 277–291.

    Google Scholar 

  • Loopstra, C.A., Puryear, J.D. and No, E.-G. 2000. Purification and cloning of an arabinogalactan-protein from xylem of loblolly pine. Planta 210: 686–689.

    Google Scholar 

  • Lu, C.-F., Kurjan, J. and Lipke, P.N. 1994. A pathway for cell wall anchorage of Saccharomyces cerevisiae α–agglutinin. Mol. Cell Biol. 14: 4825–4833.

    Google Scholar 

  • Martienssen, R.A. 2000. Weeding out the genes: the Arabidopsis genome project. Funct. Integr. Genomics 1: 2–11.

    Google Scholar 

  • Mau, S.-L., Chen, C.-G., Pu, Z.-Y., Moritz, R.L., Simpson, R.J., Bacic, A. and Clarke, A.E. 1995. Molecular cloning of cDNAs encoding the protein backbones of arabinogalactan-proteins from the filtrate of suspension-cultured cells of Pyrus communis and Nicotiana alata. Plant J. 8: 269–281.

    Google Scholar 

  • McCabe, P.F., Valentine, T.A., Forsberg, L.S. and Pennell, R.I. 1997. Soluble signals from cells identified at the cell wall estab-lish a developmental pathway in carrot. Plant Cell 9: 2225–2241.

    Google Scholar 

  • McKinney, E.C., Ali, N., Traut, A., Feldmann, K.A., Belostotsky, D.A., McDowell, J.M. and Meagher, R.B. 1995. Sequence-based identification of T-DNA insertion mutations in Arabidopsis: actin mutants act2–1 and act4–1. Plant J. 8: 613–622.

    Google Scholar 

  • McNamara, M.K. and Stone, B.A. 1981. Isolation, characterization and chemical synthesis of a galactosyl-hydroxyproline link-age compound from wheat endosperm arabinogalactan-peptide. Lebensm. Wiss. Technol. 14: 182–187.

    Google Scholar 

  • Meissner, R.C., Jin, H., Cominelli, E., Denekamp, M., Fuertes, A., Greco, R. et al. 1999. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell 11: 1827–1840.

    Google Scholar 

  • Miyata, T., Takeda, J., Iida, Y., Yamada, N., Inoue, N., Takahashi, M. et al. 1993. Cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science 259: 1318–1320.

    Google Scholar 

  • Muñiz, M. and Riezman, H. 2000. Intracellular transport of GPI-anchored proteins. EMBO J. 19: 10–15.

    Google Scholar 

  • Nakai, K. and Horton, P. 1999. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24: 34–36.

    Google Scholar 

  • Nakamura, N., Inoue, N., Watanabe, R., Takahashi, M., Takeda, J., Stevens, V.L. and Kinoshita, T. 1997. Expression cloning of PIG-L, a candidate N-acetylglucosaminylphosphatidylinositol deacetylase. J. Biol. Chem. 272: 15834–15840.

    Google Scholar 

  • Nakato, H., Futch, T.A. and Selleck, S.B. 1995. The division abnormally delayed (dally) gene: a putative integral membrane proteo-.175 glycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development 121: 3687–3702.

    Google Scholar 

  • Nam, J., Mysore, K.S., Zheng, C., Knue, M.K., Matthysse, A.G. and Gelvin, S.B. 1999. Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol. Gen. Genet. 261: 429–438.

    Google Scholar 

  • Nothnagel, E.A. 1997. Proteoglycans and related components in plant cells. Int. Rev. Cytol. 174: 195–291.

    Google Scholar 

  • Orlean, P., Albright, C. and Robbins, P.W. 1988. Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J. Biol. Chem. 263: 17499–17507.

    Google Scholar 

  • Oxley, D. and Bacic, A. 1999. Structure of the glycosyl-phosphatidylinositol membrane anchor of an arabinogalactan-protein from Pyrus communis suspension-cultured cells. Proc. Natl. Acad. Sci. USA 6: 14246–14251.

    Google Scholar 

  • Parinov, S., Sevugan, M., Ye, D., Yang, W.-C., Kumaran, M. and Sundaresan, V. 1999. Analysis of flanking sequences from Dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11: 2263–2270.

    Google Scholar 

  • Peles, E., Nativ, M., Lustig, M., Grumet, M., Schilling, J., Martinez, R. et al. 1997. Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions. EMBO J. 16: 978–988.

    Google Scholar 

  • Pennell, R.I., Janniche, L., Kjellbom, P., Scofield, G.N., Peart, J.M. and Roberts, K. 1991. Developmental regulation of a plasma membrane arabinogalactan protein epitope in oilseed rape flowers. Plant Cell 3: 1317–1326.

    Google Scholar 

  • Pogson, B.J. and Davies, C. 1995. Characterization of a cDNA en-coding the protein moiety of a putative arabinogalactan protein from Lycopersicon esculentum. Plant Mol. Biol. 28: 347–352.

    Google Scholar 

  • Prescott, J.H., Enriquez, P., Jung, C., Menz, E. and Groman, E.V. 1995. Larch arabinogalactan for hepatic drug delivery: isolation and characterization of a 9 kDa arabinogalactan fragment. Carbohydrate Res. 278: 113–128.

    Google Scholar 

  • Puoti, A. and Conzelmann, A. 1993. Characterization of abnor-mal free glycosylphosphatidylinositols accumulating in mutant lymphoma cells of classes B, E, F and H. J. Biol. Chem. 268: 7215–7224.

    Google Scholar 

  • Qi, W., Fong, C. and Lamport, D.T.A. 1991. Gum arabic gly-coprotein is a twisted hairy rope: a new model based on O-galactosylhydroxyproline as the polysaccharide attachment site. Plant Physiol. 96: 848–855.

    Google Scholar 

  • Robert, L.S., Allard, S., Gerster, J.L., Cass, L. and Simmonds, J. 1994. Molecular analysis of two Brassica napus genes expressed in the stigma. Plant Mol. Biol. 26: 1217–1222.

    Google Scholar 

  • Schlessinger, J., Lax, I. and Lemmon, M. 1995. Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83: 357–360.

    Google Scholar 

  • Schmidt, E.D.L., Guzzo, F., Toonen, M.A.J. and de Vries, S.C. 1997. A leucine-rich repeat containing receptor-like ki-nase marks somatic plant cells competent to form embryos. Development 124: 2049–2062.

    Google Scholar 

  • Schönbachler, M., Horvath, A., Fassler, J.S. and Riezman, H. 1995. The yeast spt14 gene is homologous to the human PIG-A gene and is required for GPI anchor synthesis. EMBO J. 14: 1637–1645.

    Google Scholar 

  • Schultz, C.J., Gilson, P., Oxley, D., Youl, J.J. and Bacic, A. 1998. GPI-anchors on arabinogalactan-proteins: implications for signalling in plants. Trends Plant Sci. 3: 426–431.

    Google Scholar 

  • Schultz, C.J., Johnson, K.L., Currie, G. and Bacic, A. 2000. The classical arabinogalactan protein gene family of Arabidopsis. Plant Cell 12: 1751–1767.

    Google Scholar 

  • Selleck, S.B. 2000. Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet. 16: 206–212.

    Google Scholar 

  • Serpe, M.D. and Nothnagel, E.A. 1999. Arabinogalactan-proteins in the multiple domains of the plant cell surface. Adv. Bot. Res. 30: 207–289.

    Google Scholar 

  • Sherrier, D.J., Prime, T.A. and Dupree, P. 1999. Glyco-sylphosphatidylinositol-anchored cell-surface proteins from Ara-bidopsis. Electrophoresis 20: 2027–2035.

    Google Scholar 

  • Shorrosh, B.S. and Dixon, R.A. 1991. Molecular cloning of a puta-tive plant endomembrane protein resembling vertebrate protein disulfide-isomerase and a phosphatidylinositol-specific phospho-linase C. Proc. Natl. Acad. Sci USA 88: 10941–10945.

    Google Scholar 

  • Showalter, A.M. 1993. Structure and function of plant cell wall proteins. Plant Cell 5: 9–23.

    Google Scholar 

  • Shpak, E., Leykam, J.F. and Kieliszewski, M.J. 1999. Syn-thetic genes for glycoprotein design and the elucidation of hydroxyproline-O-glycosylation codes. Proc. Natl. Acad. Sci. USA 96: 14736–14741.

    Google Scholar 

  • Sims, I.M., Middleton, K., Lane, A.G., Cairns, A.J. and Bacic, A. 2000. Characterisation of extracellular polysaccharides from suspension cultures of members of the Poaceae. Planta 210: 261–268.

    Google Scholar 

  • Smith, N.A., Singh, S.P., Wang, M.-B., Stoutjesdijk, P.A., Green, A.G. and Waterhouse, P.M. 2000. Total silencing by intron-spliced hairpin RNAs. Nature 407: 319–320.

    Google Scholar 

  • Sommer-Knudsen, J., Clarke, A.E. and Bacic, A. 1996. A galactose-rich, cell-wall glycoprotein from styles of Nicotiana alata.Plant J. 9: 71–83.

    Google Scholar 

  • Sommer-Knudsen, J., Clarke, A.E. and Bacic, A. 1997. Proline-and hydroxyproline-rich gene products in the sexual tissues of flowers. Sex. Plant Reprod. 10: 253–260.

    Google Scholar 

  • Sommer-Knudsen, J., Bacic, A. and Clarke, A.E. 1998. Hydroxyproline-rich plant glycoproteins. Phytochemistry 47: 483–497.

    Google Scholar 

  • Souter, M. and Lindsey, K. 2000. Polarity and signalling in plant embryogenesis. J. Exp. Bot. 51: 971–983.

    Google Scholar 

  • Stevens, V.L. 1993. Regulation of glycosylphosphatidylinositol biosynthesis by GTP. Stimulation of N-acetylglucosamine-phosphatidylinositol deacylation. J. Biol. Chem. 268: 9718–9724.

    Google Scholar 

  • Sütterlin, C., Escribano, M.V., Gerold, P., Maeda, Y., Mazon, M.J., Kinoshita, T. et al. 1998. Saccharomyces cerevisiae GPI10, the functional homologue of human PIG-B, is required for glycosylphosphatidylinositol-anchor synthesis. Biochem J. 332: 153–159.

    Google Scholar 

  • Suzuki, K. and Okumura, Y. 2000. GPI-linked proteins do not transfer spontaneously from erythrocytes to liposomes. New aspects of reorganization of the cell membrane. Biochemistry 39: 9477–9485.

    Google Scholar 

  • Svetek, J., Yadav, M.P. and Nothnagel, E.A. 1999. Presence of a gly-cosylphosphatidylinositol lipid anchor on rose arabinogalactan proteins. J. Biol. Chem. 274: 14724–14733.

    Google Scholar 

  • Takahashi, M., Inoue, N., Ohishi, K., Maeda, Y., Nakamura, N., Endo, Y. et al. 1996. PIG-B, a membrane protein of the endo-plasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor. EMBO J. 15: 4254–4261.

    Google Scholar 

  • Takeda, J., Miyata, T., Kawagoe, K., Iida, Y., Endo, Y., Fu-jita, T. et al. 1993. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73: 703–711

    Google Scholar 

  • Takos, A.M., Dry, I.B. and Soole, K.L. 2000. Glycosyl-phosphatidylinositol-anchor addition signals are processed in Nicotiana tabacum. Plant J. 21: 43–52.

    Google Scholar 

  • Thompson, G.A. Jr. and Okuyama, H. 2000. Lipid-linked proteins of plants. Prog. Lipid Res. 39: 19–39.

    Google Scholar 

  • Toonen, M.A.J., Schmidt, E.D.L., van Kammen, A. and de Vries, S.C. 1997. Promotive and inhibitory effects of diverse arabino-galactan proteins on Daucus carota L. somatic embryogenesis. Planta 203: 188–195.

    Google Scholar 

  • Udenfriend, S. and Kodukula, K. 1995. How glycosyl-phosphatidylinositol-anchored membrane proteins are made. Annu. Rev. Biochem. 64: 563–591.

    Google Scholar 

  • Vossen, J.H., Ram, A.F.J. and Klis, F.M. 1995. Identification of SPT14/CWH6 as the yeast homologue of hPIG-A, a gene in-volved in the biosynthesis of GPI anchors. Biochim. Biophys. Acta 1243: 549–551.

    Google Scholar 

  • Vossen, J.H., Müller, W.H., Lipke, P.N. and Klis, F.M. 1997. Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins. J. Bact. 179: 2202–2209.

    Google Scholar 

  • Vroemen, C., de Vries, S. and Quatrano, R. 1999. Signalling in plant embryos during the establishment of the polar axis. Semin. Cell Dev. Biol. 10: 157–164.

    Google Scholar 

  • Waffenschmidt, S., Woessner, J.P., Beer, K. and Goodenough, U.W. 1993. Isodityrosine cross-linking mediates insolubilization of cell walls in Chlamydomonas. Plant Cell 5: 809–820.

    Google Scholar 

  • Ware, F.E. and Lehrman, M.A. 1996. Expression cloning of a novel suppressor of the Lec15 and Lec35 glycosylation mutations of Chinese hamster ovary cells. J. Biol. Chem. 271: 13935–13938.

    Google Scholar 

  • Watanabe, R., Inoue, N., Westfall, B., Taron, C.H., Orlean, P., Takeda, J. and Kinoshita, T. 1998. The first step of glycosylphos-phatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J. 17: 877–885.

    Google Scholar 

  • Winkler, R.G., Frank, M.R., Galbraith, D.W., Feyereisen, R. and Feldmann, K.A. 1998. Systematic reverse genetics of transfer-DNA-tagged lines of Arabidopsis. Plant Physiol. 118: 743–750.

    Google Scholar 

  • Wojtaszek, P., Smith, C.G. and Bolwell, G.P. 1999. Ultrastructural localisation and further biochemical characterisation of prolyl 4-hydroxylase from Phaseolus vulgaris: comparative analysis. Int. J. Biochem. Cell Biol. 31: 463–477.

    Google Scholar 

  • Wu, H.-M., Wong, E., Ogdahl, J. and Cheung, A.Y. 2000. A pollen tube growth-promoting arabinogalactan protein from Nicotiana alata is similar to the tobacco TTS protein. Plant J. 22: 165–176.

    Google Scholar 

  • Yariv, J., Lis, H. and Katchalski, E. 1967. Precipitation of arabic acid and some seed polysaccharides by glycosylphenylazo dyes. Biochem. J. 105: 1c–2c.

    Google Scholar 

  • Yates, E.A., Valdor, J.-F., Haslam, S.M., Morris, H.R., Dell, A., Mackie, W. and Knox, J.P. 1996. Characterization of carbo-hydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6: 131–139.

    Google Scholar 

  • Youl, J.J., Bacic, A. and Oxley, D. 1998. Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphos-phatidylinositol membrane anchors. Proc. Natl. Acad. Sci. USA 95: 7921–7926.

    Google Scholar 

  • Yu, J., Nagarajan, S., Knez, J.J., Udenfriend, S., Chen, R. and Medof, M.E. 1997. The affected gene underlying the class K glycosylphosphatidylinositol (GPI) surface protein defect codes for the GPI transamidase. Proc. Natl. Acad. Sci. USA 94: 12580–12585.

    Google Scholar 

  • Zablackis, E., Huang, J., Muller, B., Darvill, A.G. and Alber-sheim, P. 1995. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol. 107: 1129–1138.

    Google Scholar 

  • Zhang, Y., Sederoff, R.R. and Allona, I. 2000. Differential expres-sion of genes encoding cell wall proteins in vascular tissues from vertical and bent loblolly pine trees. Tree Physiol. 20:457–466.

    Google Scholar 

  • Zinn, K., McAllister, L. and Goodman, C.S. 1988. Sequence analy-sis and neuronal expression of fasciclin I in grasshopper and Drosophila. Cell 53: 577–587.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaspar, Y., Johnson, K.L., McKenna, J.A. et al. The complex structures of arabinogalactan-proteins and the journey towards understanding function. Plant Mol Biol 47, 161–176 (2001). https://doi.org/10.1023/A:1010683432529

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010683432529

Navigation