Skip to main content
Log in

Ecological factors affecting gene flow between populations of Anarthrophyllum cumingii (Papilionaceae) growing on equatorial- and polar-facing slopes in the Andes of Central Chile

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

In the Andes of Central Chile, flowering commences 1–2 months earlier on equatorial-(north-) facing than on polar- (south-) facing slopes, and pollinator assemblages also differ between these habitats. In order to understand the potential influence of these differences on gene flow, we monitored flowering periods and insect visitation rates to flowers of 60 individuals of Anarthrophyllum cumingii (Papilionaceae) on two equatorial- and two polar-facing slopes in the Andes of central Chile (33°35′ S;70°32′ W). Flowering began about 30 days earlier on equatorial-facing slopes. Flowering periods of individuals on slopes with the same aspect had a mean overlap of 0.52, while those on opposite slopes had a mean overlap of 0.15. On equatorial-facing slopes Yramea lathionoides (Lepidoptera) accounted for 60% of the visits to flowers of A. cumingii, while on polar-facing slopes Centris cineraria (Hymenoptera) was responsible for more than 80% of flower visits. Average similarities of visitor assemblages among individual plants on slopes with the same aspect was 0.83, while the mean similarity between individuals on opposite slopes was only 0.23. Within slopes fluorescent dyes were dispersed up to 40 m from the donor plants, but there was no movements of dyes between individuals growing on opposite slopes, even when they were separated by less than 10 m. Synchronous blooming and a common pollen vector are necessary conditions for pollen exchange between individuals. The overall probability of pollen exchange estimated by multiplying the inter-individual overlap for both factors, was nearly 0.5 for individuals growing on slopes with the same aspect, and less than 0.04 for individuals growing on opposite slopes. Consequently, at equivalent distances, the probability of pollen exchange between individuals growing on slopes of opposite aspect is more than 10-times lower than between those growing on the same slopes. Seed dispersal cannot compensate for restricted gene flow through pollination, because seeds of A. cumingii were dispersed less than 2 m away from a parent plant. Presumably, restricted gene flow could enhance genetic divergence between populations on slopes of contrasting aspects. This factor could be important in contributing to the high diversity and endemism in the Chilean Andes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott, R. J. & M. F. Gomez. 1989. Population genetic structure and outcrossing rate of Arabidopsis thaliana(L.) Heynh. Heredity 62: 411-417.

    Google Scholar 

  • Armesto, J. J. & Gutiérrez, J. 1978. Una hipótesis sobre la diversidad de especies arbustivas en la región mediterránea de Chile. Ann. Museo Historia Chile 11: 49-54.

    Google Scholar 

  • Armesto, J. J. & Martínez, J. 1978. Relations between vegetation structure and slope aspect in the mediterranean region of Chile. J. Ecol. 66: 881-889.

    Google Scholar 

  • Armesto, J. J., Gutiérrez, J. & Martínez, J. 1979. —Las comunidades vegetales de la región mediterránea de Chile: distribución de especies y formas de vida en un gradiente de aridez. Medio Ambiente 4: 62-70.

    Google Scholar 

  • Arroyo, M. T. K., Armesto, J. J. & Villagrán, C. 1981. Plant phenological patterns in the high Andean Cordillera of Central Chile. J. Ecol. 69: 205-223.

    Google Scholar 

  • Arroyo, M. T. K., Primack, R. & Armesto, J. J. 1982. Community studies in pollination ecology in the high temperate Andes of Central Chile. I. Pollination mechanisms and altitudinal variation. Am. J. Bot. 69: 82-97.

    Google Scholar 

  • Arroyo, M. T. K., Armesto, J. J. & Primack, R. 1983. Tendencias altitudinales y latitudinales en mecanismos de polinizaci ón en la zona andina de los Andes templados de Sudamérica. Rev. Chilena Historia Natural 56: 159-180.

    Google Scholar 

  • Arroyo, M. T. K., Marticorena, C. & Villagrán, C. 1984. La flora de la cordillera de los Andes en el área de Laguna Grande y Laguna Chica, III Región, Chile. Gayana, Bot. 41 (1-2): 3-46.

    Google Scholar 

  • Arroyo, M. T. K., Armesto, J. J. & Primack, R. 1985. Community studies in pollination ecology in the high temperate Andes of Central Chile. II. Effect of temperature on visitation rates and pollination possibilities. Plant Syst. Evol. 149: 187-203.

    Google Scholar 

  • Arroyo, M. T. K., Squeo, F. & Lanfranco, D. 1987. Polinización biótica en los Andes deChile: avances hacia una síntesis. Pp. 55- 76. In: Forero, E., Sarmiento, F. & La Rotta, C. (eds), Simposio de de ecología de la reproducción e interacciones planta/animal.Anales del IV Congreso Latinoamericano de Botánica.

  • Arroyo, M. T. K., Squeo, F., Armesto, J. J. & Villagrán, C. 1988. Effects of aridity on plant diversity in the northern chilean Andes: results of a natural experiment. Ann. Missouri Bot. Garden 75: 55-88.

    Google Scholar 

  • Arroyo, M. T. K., Rozzi, R., Squeo, F. & Belmonte, E. 1990. Pollination in tropical and temperate high elevation ecosystems: hypotheses and the Asteraceae as a test case. Pp. 21-31. In: Winiger M., Weismann U. & Rhekert J. (eds.), mounts Kenya Area: Differentiation and Dynamics of a Tropical Mountain Ecosystem, Geographic Bermensia, African Studies Series A8.

  • Ashton, D. H. 1975. Studies of flowering behaviour in Eucalyptus regans F. Muell. Austr. J. Bot. 23: 399-411.

    Google Scholar 

  • Barton, N. H. & Charlesworth, B. (1984). Genetic revolutions, founder effects, and speciation. Ann. Rev. Ecol. Syst. 15: 133- 164.

    Google Scholar 

  • Bos, M. & van der Haring, E. 1988. Gene flow in PlantagoII. Gene flow pattern and population structure. A simulation study. Heredity 61: 1-11.

    Google Scholar 

  • Clay, K. & D. A. Levin. 1989. Quantitative variation in Phlox: comparison of selfing and outcrossing species. Am. J. Bot. 76: 577-588.

    Google Scholar 

  • Colwell, R. K. & Futuyma, D. J. 1971. On the measurment of niche breadth and overlap. Ecology 52 (4): 567-576.

    Google Scholar 

  • Corbet, S. A. 1990. Pollination and the weather. Israel J. Bot. 39: 13-30.

    Google Scholar 

  • Courtney, S. P., Hill, C. J. & Westerman, A. 1982. Pollen carried for long periods by butterflies. Oikos 38: 260-263.

    Google Scholar 

  • del Pozo, A. 1985. —Zonación microclimática del matorral: Efecto de losmanchones de arbustos. Master Thesis, Facultad de Ciencias, Universidad de Chile.

  • di Castri, F. & Hajek, E. 1976. —Bioclimatología de Chile. Ediciones de la Universidad Católica de Santiago.

  • Ehrlich, P. R. and P. H. Raven. (1969). Differentiation of populations. Science 165: 1228-1232.

    Google Scholar 

  • Faegri, K. & van der Pijl, L. (1979). The principles of pollination ecology. Third edition. William Clowes and Sons Limited, London.

    Google Scholar 

  • Fogleman, J. C. 1982. Temperature effects in relation to the patterns of distribution and abundance of three species in the Drosophila affinissubgroup. Ecol. Entomol. 7: 139-148.

    Google Scholar 

  • Fripp, Y. J., Griffin, A. R. & Moran, G. F. 1986. Variation in allele frequencies in the outcross pollen pool of Eucalyptus regnansF. Muell. throughout a flowering season. Heredity 59: 161-171.

    Google Scholar 

  • Handel, S. 1983 Pollination ecology, plant population structure, and gene flow. In ‘Pollination Biology’: 163-211. L. Real (ed.). Academic Press, Orlando, Florida.

    Google Scholar 

  • Heinrich, B. 1974. Thermoregulation un endothermic insects. Science 185: 747-755.

    Google Scholar 

  • Heinrich, B. 1975. Energetics of pollination. Ann. Rev. Ecol. Syst. 6: 139-169.

    Google Scholar 

  • Heinrich, B. 1979. Bumblebee economics. Harvard University Press.

  • Herrera, C. M. 1986. Flowering and fruiting in the coastal shrulands of Doñana, south Spain. Vegetatio 68: 91-98.

    Google Scholar 

  • Herrera, C. M. 1995. Microclimate and individual variation in pollinators: flowering plants are more than their flowers. Ecology 76: 1516-1524.

    Google Scholar 

  • Hodgkinson, K. C. & Quinn, J. A. 1978. Environmental and genetic control of reproduction in Danthonia caespitosapopulations. Austr. J. Bot. 26: 351-364.

    Google Scholar 

  • Hoefs, M. 1979. Flowering plant phenology at Sheep Mountain, southwest Yukon Territory. Can. Field-Naturalist 93: 183-187.

    Google Scholar 

  • Hughes, J. & Richards, A. J. 1988. The genetic structure of sexual and asexual Taraxacum(dandelion). Heredity 60: 161-169.

    Google Scholar 

  • Jennersten, O. 1984. Flower visitation and pollen efficiency of some North European butterflies. Oecologia 63: 80-89.

    Google Scholar 

  • Kerster, H. & Levin, D. A. 1968. Neighborhood size in Lithospermum caroliniense. Genetics 60: 577-587.

    Google Scholar 

  • Kingsolver, J. G. 1983. Thermoregulation and flight in Coliasbutter flies: elevational patterns and mechanistic limitations. Ecology 64 (3): 534-545.

    Google Scholar 

  • Kingsolver, J. G. 1985a. Thermal ecology of Pierisbutterflies (Lepidoptera: Pieridae): a new mechanism of behavioral thermoregulation. Oecologia 66: 540-545.

    Google Scholar 

  • Kingsolver, J. G. 1985b. Thermoregulatory significance of wing melanization in Pierisbutterflies (Lepidoptera: Pieridae): physics, posture and pattern. Oecologia 66: 546-553.

    Google Scholar 

  • Kohn, A. J. & Riggs, A. C. 1982. Sample size dependence in measures of proportional similarity. Marine Ecol. Progress Ser. 9: 147-151.

    Google Scholar 

  • Levin, D. & Kerster, H. 1969. Density-dependent gene dispersal in Liatris. Am. Nat. 103: 61-74.

    Google Scholar 

  • Levin, D. & Kerster, H. 1974. Gene flow in seed plants. Evol. Biol. 7: 139-220.

    Google Scholar 

  • Linhart, Y. B. & Feinsinger, P. 1980. Plant hummingbird interactions: effects of island size and degree of specialization on pollination. J. Ecol. 68: 745-760.

    Google Scholar 

  • Loveless, M. D. & Hamrick, J. L. 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15: 65-95.

    Google Scholar 

  • Mascie-Taylor, C. G. N., Gibson, J. B. & Thoday, J. M. 1986. Effects of disruptive selection XI: gene flow and divergence. Heredity 57: 407-413.

    Google Scholar 

  • Murphy, D. D. 1984. Butterflies and their nectar plants: the rol of the checkerspot butterfly Euphydrias editaas a pollen vector. Oikos 43: 113-117.

    Google Scholar 

  • Nevo, E., Bar-El, C. Beiles, A. & Yom-Tov, Y. 1982. Adaptative microgeographic differentitation of allozyme polymorphism in landsnails. Genetica 59: 61-67.

    Google Scholar 

  • Ohsawa, R. & Namai, H. 1987. The effect of insect pollinators on pollination and seed setting in Brassica campestriscv. Nozawana and Brassica junceacv. Kikarashina. Japan J. Breed. 37: 453-463.

    Google Scholar 

  • Pivnick, K. A. & McNeill, J. 1986. Sexual differences in the thermoregulation of Thymelicus lineolaadults (Lepidoptera: Hesperidae). Ecology 67: 1024-1035.

    Google Scholar 

  • Price, M. V. & Waser, N. M. 1982. Alternativemodels of pollen transfer. Pp. 474-489. In: Jones, CE & Little, RJ (eds), Handbook of experimental pollination biology. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Primack, R. 1978. Variability in New Zealand montane pollinator assembleges. New Zealand J. Ecol. 1: 66-73.

    Google Scholar 

  • Primack, R. 1980. Variation in the phenology of natural populations of montane shrubs in New Zealand. J. Ecol. 68: 849-862.

    Google Scholar 

  • Primack, R. 1985a. Longevity of individual flowers. Ann. Rev. Ecol. Syst. 16: 15-37.

    Google Scholar 

  • Primack, R. 1985b. Patterns of flowering phenology in communities, populations, individuals and single flowers. Pp. 571-593. In: White, J. (ed).), The population structure of vegetation. Junk Publishers, Dordrecht, Holland.

    Google Scholar 

  • Reader, R. J. 1984. Comparisons of the annual flowering schedules for Scottish heathland and mediterranean-type shrublands. Oikos 43: 1-8.

    Google Scholar 

  • Rozzi, R. 1990. Períodos de floración y especies de polinizadores en poblaciones de Anarthrophyllum cumingiiy Chuquiraga oppositifoliaque crecen sobre laderas de exposición norte y sur. Master Thesis, Facultad de Ciencias, Universidad de Chile.

  • Rozzi, R., Molina, J. D. & Miranda, P. 1989. Microclima y períodos de floración en laderas de exposición ecuatorial y polar en los Andes de Chile Central. Rev. Chilena Historia Nat. 62: 74-85.

    Google Scholar 

  • Schaal, B. 1975. Population structure and local differentiation in Liatris cylindracea. Am. Naturalist 109: 511-528.

    Google Scholar 

  • Schaal, B. 1980. Measurement of gene flow in Lupinus texensis. Nature 284: 450-451.

    Google Scholar 

  • Schmitt, J. 1980. Pollinator foraging behavior and gene dispersal in Senecio(Compositae). Evolution 34(5): 934-943.

    Google Scholar 

  • Slatkin, M. 1985. Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16: 393-430.

    Google Scholar 

  • Slatkin, M. & Maruyama, T. 1975. The influence of gene flow on genetic distance. Am. Naturalist 109: 597-601.

    Google Scholar 

  • Sokal, R. R. & Rohlf, F. J. 1981. Biometry. Second edition. W. H. Freeman and Company, New York.

    Google Scholar 

  • Soltis, P. S. & Bloom, W. L. 1986. Genetic variation and estimates of gene flow in Clarkia speciosasubsp. polyanta(Onagraceae). Am. J. Bot. 73: 1677-1682.

    Google Scholar 

  • Soraru, S. B. 1974. —Revisión de Anarthrophyllumgénero argentinochileno de Leguminosas. Darwiniana 18 (3-4): 453-488.

    Google Scholar 

  • Steel, R. G. D. & Torrie, J. H. 1980. Principles and procedures of statistics. Second edition. McGraw-Hill Book Company, New York.

    Google Scholar 

  • van der Pijl, L. 1972. Principles of dispersal in higher plants. Springer-Verlag, Berlin. Second Edition.

    Google Scholar 

  • Varvio, S. L., Chakraborty, R. & Nei, M. 1986. Genetic in subdivided populations and conservation genetics. Heredity 57: 189-198.

    Google Scholar 

  • Waser, N. M. 1983. Competition for pollination and floral character differences among sympatric plant species: a review of evidence. In: Jones, C. E. & Little, R. J. Little (eds), handbook of experimental pollination biology. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Waser, N. M. 1982. A comparison of distances flown by different visitors to flowers of the same species. Oecologia 55: 251-257.

    Google Scholar 

  • Waser, N. M. & Price, M. V. 1982. A comparison of pollen and fluorescent dye carry-over by natural pollinators of Ipomopsis agregata(Polemoniaceae). Ecology 63: 1168-1172.

    Google Scholar 

  • Wiklund, C., Erikson, T. & Lundberg, H. 1981. On the pollination efficiency of butterflies: a reply to Courtney et al. Oikos 38: 263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozzi, R., Arroyo, M.K. & Armesto, J.J. Ecological factors affecting gene flow between populations of Anarthrophyllum cumingii (Papilionaceae) growing on equatorial- and polar-facing slopes in the Andes of Central Chile. Plant Ecology 132, 171–179 (1997). https://doi.org/10.1023/A:1009747118914

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009747118914

Navigation