Skip to main content
Log in

Fluorogenic Probes Applied to the Study of Induced Oxidative Stress in the Human Leukemic HL60 Cell Line

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Development of microspectrofluorometric methods using specific fluorogenic probes has provided precious help in studying in situ oxidative stress and cellular protective systems. The aim of this study was to determine ROS production concomitantly with a modification of the intracellular thiol pool after applying an oxidative stress to a nonadherent cell model represented by the HL60 cell line. The dichlorodihydrofluorescein diacetate (H2DCFDA) probe assessed the kinetic production of ROS by cells submitted to the chemical oxidant t-butylhydroperoxide with a high signal/noise ratio. The probe sensitivity permitted us to detect endogenous ROS production in HL60 cells and the protective effect of N-acetyl cysteine against ROS. The chloromethylfluorescein diacetate probe (CMFDA) permitted us to evaluate the thiol depleting effect of N-ethyl maleimide. Complete thiol depletion was associated with a moderate increase in ROS production. The cell viability was determined with calcein-AM, which gave results similar to those with the tetrazolium dye. This probe was not affected by intracellular pH and did not required an extraction step, unlike tetrazolium dye. In conclusion, cell-permeant fluorogenic probes are useful and sensitive tools to determine in situ ROS production concomitantly with consecutive change in the thiol system in a living and non-adherent cell model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Reader, M. Marion, and F. Denizeau (1993) Toxicology 80, 117-123.

    Google Scholar 

  2. X. Ronot, S. Paillasson and K. A. Muirhead (1996) in M. Al-Rubeai and A. N. Emery (eds.). In Flow Cytometry Applications in Cell Culture, Marcel Dekker, New York, pp. 177-192.

    Google Scholar 

  3. M. A. Model, M. A. Kukuruga, and R. F. Todd (1997) J. Immunol. Methods 202, 105-109.

    Google Scholar 

  4. R. P. Haugland (1996) in K. D. Larrison (ed.), Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Eugene, OR, pp. 172-176.

  5. P. Schratzberger, C. M. Kahler, and C. J. Wiedermann (1996) Ann. Hematol. 72, 23-29.

    Google Scholar 

  6. S. Tolosa and S. Shaw (1996) J. Immunol. Methods 192, 165-171.

    Google Scholar 

  7. C. P. Le Bel, H. Ischiropoulos, and S. C. Bondy (1992) Chem. Res. Toxicol. 5, 227-233.

    Google Scholar 

  8. H. Zhu (1994) Arch. Toxicol. 68, 582-589.

    Google Scholar 

  9. D. Hedley and S. Chaw (1994) Methods Cell. Biol. 42, 31-36.

    Google Scholar 

  10. H. Lilius, T. Hastbacka, and B. Isomaa (1996) Toxicol. In Vitro 10, 341-348.

    Google Scholar 

  11. M. S. Noël-Hudson, F. Braut-Boucher, M. Robert, M. Aubery, and J. Wepierre (1997) Toxicol. In Vitro 11, 645-651.

    Google Scholar 

  12. S. J. Collins (1987) Blood 70, 1233-1244.

    Google Scholar 

  13. T. Mosmann (1983) J. Immunol. Methods 65, 55-63.

    Google Scholar 

  14. X. Wang, T. Sasaki, T. Matsudo, K. Saijo-Kurta, and T. Ohno (1993) AATEX 2, 115-126.

    Google Scholar 

  15. F. Braut-Boucher, J. Pichon, P. Rat, M. Adolphe, M. Aubery, and J. Font (1995) J. Immunol. Methods 178, 41-51.

    Google Scholar 

  16. E. Pick and Y. Keisari (1981) J. Immunol. Methods 38, 161-165.

    Google Scholar 

  17. C. L. Gately, S. M. Wahl, and J. J. Oppenheim (1983) J. Immunol. 131, 2853-2858.

    Google Scholar 

  18. F. Braut-Boucher, J. Font, J. Pichon, B. Baudin, and M. Aubery (1998) Vet. Hum. Toxicol. 40, 178-184.

    Google Scholar 

  19. V. H. Guaiquil, C. M. Farber, D. W. Golde, and J. Carlos Vera (1997) J. Biol. Chem. 272, 9915-9921.

    Google Scholar 

  20. B. Friedrichs, C. Müller, and R. Brigelius-Flohé (1998) Arterioscler. Thromb. Vasc. Biol. 18, 1829-1837.

    Google Scholar 

  21. S. C. Wright, H. Wang, Q. S. Wei, D. H. Kinder, and J. W. Larrick (1998) Cancer Res. 58, 5570-5576.

    Google Scholar 

  22. P. Rat, M. D. Christen, M. Thevenin, J. M. Warnet, and M. Adolphe (1995) Methods Enzymol. 252, 331-341.

    Google Scholar 

  23. A. Holmgren (1989) J. Biol. Chem. 264, 13963-13966.

    Google Scholar 

  24. S. Rappeneau, A. Baeza-Squiban, F. Braut-Boucher, M. Aubery, M. C. Gendron, and F. Marano (1999) Toxicol. In Vitro 13, 765-771.

    Google Scholar 

  25. A. L. Akeson and W. Woods (1993) J. Immunol. Methods 163, 181-185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plantin-Carrenard, E., Braut-Boucher, F., Bernard, M. et al. Fluorogenic Probes Applied to the Study of Induced Oxidative Stress in the Human Leukemic HL60 Cell Line. Journal of Fluorescence 10, 167 (2000). https://doi.org/10.1023/A:1009499210857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009499210857

Navigation