Skip to main content
Log in

Transport and utilization of rhizoferrin bound iron in Mycobacterium smegmatis

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Transport and metabolization of iron bound to the fungal siderophore rhizoferrin was analyzed by transport kinetics, Mössbauer and EPR spectroscopy. Saturation kinetics (v max=24.4 pmol/(mg min), K m=64.4μM) and energy dependence excluded diffusion and provided evidence for a rhizoferrin transport system in M. smegmatis. Based on the spectroscopic techniques indications for intracellular presence of the ferric rhizoferrin complex were found. This feature could be of practical importance in the search of novel drugs for the treatment of mycobacterial infections. EPR and Mössbauer spectroscopy revealed different ferritin mineral cores depending on the siderophore iron source. This finding was interpreted in terms of different protein shells, i.e. two types of ferritins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åasa R, Vänngård T. 1975 EPR signal intensity and powder shapes: a reexamination. J Magn Res 19, 308-315.

    Google Scholar 

  • Bagg A, Neilands JB. 1987 Molecular mechanisms of regulation of siderophore mediated iron assimilation. Microbiol Rev 51, 509-518.

    Google Scholar 

  • Barclay R, Ratledge C. 1983 Iron-binding compounds of Mycobacterium avium, M. intracellulare, M. scrofulaceum, and mycobactin-dependent M. paratuberculosis and M. avium. J. Bacteriol. 153, 1138-1146.

    Google Scholar 

  • Bauminger ER, Cohen SG, Dickson DPE, Levy A, Ofer S, Yariv J. 1980 Mössbauer spectroscopy of Escherichia coli and its iron-storage protein. Biochim Biophys Acta 623, 237-242.

    Google Scholar 

  • Bloom BR. 1992 Back to a frightening future. Nature 358, 538-539.

    Google Scholar 

  • Boas JF, Troup GJ. 1971 Electron spin resonance and Mössbauer effect studies of ferritin. Biochim. Biophys. Acta 229, 68-74.

    Google Scholar 

  • Braun V and Hantke K. 1991 Genetics of bacterial iron transport. In: Winkelmann, G. ed., Handbook of Microbial Iron Chelates. Boca Raton, CRC Press, FL, 107-138.

    Google Scholar 

  • Doig P, Austin JW, Trust TJ. 1993 The Helicobacter pylori 19.6 Kilodalton protein is an iron containing protein resembling ferritin. J Bacteriol 175, 557-560.

    Google Scholar 

  • Drechsel H, Metzger J, Freund S, Jung G, Boelaert JR, Winkelmann G. 1992 Rhizoferrin — a novel siderophore from the fungus Rhizopus microsporus var. rhizopodiformis. Biol Metals 4, 238-243.

    Google Scholar 

  • Ecker DJ, Matzanke BF, Raymond KN. 1986 Specificity of ferric enterobactin transport in E. coli. J Bacteriol 167, 666-673.

    Google Scholar 

  • Evans DJ, Evans DG, Lampert HC, Nakano H. 1995 Identification of four new prokaryotic bacterioferritins from Helicobacter pylori, Anabaena variabilis, Bacillus subtilis and Treponema pallidum, by analysis of gene sequences. Gene 153, 123-127.

    Google Scholar 

  • Hall RM, Sritharan M, Messenger AJM, Ratledge C. 1987 Iron transport in Mycobacterium smegmatis: Occurrence of iron-regulated envelope proteins as potential receptors for iron uptake. J Gen Microbiol 133, 2107-2114.

    Google Scholar 

  • Hall RM, Ratledge C. 1987 Exochelin-mediated iron acquisition by the leprosy bacillus, Mycobacterium leprae. 1987. J Gen Microbiol 133: 193-199.

    Google Scholar 

  • Hall RM, Ratledge C. 1982 A simple method for the production of mycobactin, the lipid soluble siderophore, from bacteria. FEMS Microbiol Lett 15, 133-136.

    Google Scholar 

  • Hudson AJ, Andrews SC, Hawkins C, Williams JM, Izuhara M, Meldrum FC, Mann S, Harrison PM, Guest JR. 1993 Overproduction, purification and characterization of the Escherichia coli ferritin. Eur J Biochem 218, 985-995.

    Google Scholar 

  • Inglis NF, Stevenson K, Hosie AH, Sharp JM. 1994 Complete sequence of the gene encoding the bacterioferritin subunit of Mycobacterium avium subspecies silvaticum. Gene 150, 205-206.

    Google Scholar 

  • Izuhara M, Takamune K, Takata R. 1991 Cloning and sequencing of an Escherichia coli K12 gene which encodes a polypeptide having similarity to the human ferritin H subunit. Mol Gen Genet 225, 510-513.

    Google Scholar 

  • Kaufmann SHE, van Embden JD. 1993 Tuberculosis: a neclected disease strikes back. Trends Microbiol 1, 2-5.

    Google Scholar 

  • Macham LP, Ratledge C, Nocton JC. 1975 Extracellular iron acquisition by mycobacteria: role of the exochelins and evidence against the participation of myco bactin. Infection Imunity 12, 1242-1251.

    Google Scholar 

  • Macham LP, Ratledge C. 1975 A new group of water-soluble iron-binding compounds from mycobacteria: the exochelins. J Gen Microbiol 89: 379-382.

    Google Scholar 

  • Mann S, Williams JM, Treffry A, Harrison P. 1987. Reconstituted and native iron-cores of bacterioferitin and feritin. J Mol Biol 198, 405-416.

    Google Scholar 

  • Matzanke BF. 1991 Structures, coordination chemistry and functions of microbial iron chelates. In: Winkelmann G, ed. Handbook of Microbial Iron Chelates (Siderophores), CRC Boca Raton, USA, 15-60.

    Google Scholar 

  • Matzanke BF. 1994 Iron storage in fungi. In: Winkelmann G, Winge DR, eds Metal Ions in Fungi. New York, Marcel Dekker, 179-214.

    Google Scholar 

  • Matzanke BF, Müller-Matzanke G, Raymond KN. 1989a Siderophore mediated iron transport. In: Loehr TM, ed. Iron Carriers and Iron Proteins. New York, VCH Publishers, 1-121.

    Google Scholar 

  • Matzanke BF, Müller G, Bill E, Trautwein AX. 1989b Iron metabolism of E. coli studied by Mössbauer spectroscopy and biochemical methods. Eur J Biochem 183, 371-379.

    Google Scholar 

  • Matzanke BF, Bill E, Trautwein AX. 1991 Main components of iron metabolism in microbial systems — analyzed by in vivo Mössbauer spectroscopy. Hyperfine Interact. 71, 1259-1262.

    Google Scholar 

  • Matzanke BF, Böhnke R, Möllmann U, Reissbrodt R, Schünemann V, Trautwein AX. 1998 Iron uptake and intracellular metal transfer in mycobacteria mediated by xenosiderophores. BioMetals 11, 1-11.

    Google Scholar 

  • Neilands JB. (1982) Microbial iron transport compounds. In: Laskin AI, Lechevalier HA, Eds Handbook of Microbiology Vol. IV, 2nd edn. FL, Boca Raton, CRC Press, 565-574.

    Google Scholar 

  • Pessolini MC, Smith DR, Rivoire B, McCormick J, Hefta SA, Cole ST, Brennan P. 1994 Purification, characterization, gene sequence, and significance of a bacterioferritin from Mycobacterium leprae. J Exp Med 180, 319-327.

    Google Scholar 

  • Rastogi N. 1993 Emergence of multiple-drug-resistant tuberculosis: fundamental and applied research aspects, global issues and current strategies. Res Microbiol 144, 103-121.

    Google Scholar 

  • Ratledge C. 1982 Mycobactins and Nocobactins. In: Laskin AI, Lechevalier HA, Eds Handbook of Microbiology, Vol. IV, 2nd ed., FL, CRC Press, Boca Raton, 575-581.

    Google Scholar 

  • Raymond KN, Müller GI, Matzanke BF. 1984 Complexation of iron by side-rophores. A review of their solution and structural chemistry and biological function, Topics Current Chemistry 123, 49-102.

    Google Scholar 

  • Rohrer JS, Islam QT, Watt GD, Sayers DE, Theil EC. 1990 Iron environment in Ferritin with large amounts of phosphate, from Azotobacter vinelandii and horse spleen, analyzed using extended X-ray absorption fine structure (EXAFS). Biochemistry 29, 259-264.

    Google Scholar 

  • Sharman GJ, Williams DH, Ewing DF, Ratledge C. 1995a Determination of the structure of exochelin MN, the extracellular siderophore from Mycobacterium neoaurum. Curr Biol 2: 553-561.

    Google Scholar 

  • Sharman GJ, Williams DH, Ewing DF, Ratledge C. 1995b. Isolation, purification and structure of exochelin MS, the extracellular siderophore from Mycobacterium smegmatis. Biochem J 305, 187-196.

    Google Scholar 

  • Snow GA. 1970 Mycobactins: Iron-chelating growth factors from mycobaceria. Bacteriol Rev 34, 99-125.

    Google Scholar 

  • St. Pierre Bell SH, Dickson DPE, Mann S, Webb J, Moore GR, Williams RJP. 1986. Mössbauer spectroscopic studies of the cores of human, limpet and bacterial ferritins. Biochim Biophys Acta 870, 127-134.

    Google Scholar 

  • Thieken A, Winkelmann G. 1992 Rhizoferrin: A complexone type siderophore of the Mucorales and Entomophtorales (Zygomycetes). FEMS Microbiol Lett 94, 37-42.

    Google Scholar 

  • Wai SN, Takata T, Takade A, Hamasaki N, Amako K. 1995 Purification and characterization of ferritin from Campylobacter jejuni. Arch Microbiol 164, 1-6.

    Google Scholar 

  • Wheeler PR, Ratledge C. 1994 Metabolism of Mycobacterium tuberculosis. In: Bloom BR, ed. Tuberculosis. Washington, DC, ASM Press, 353-388.

    Google Scholar 

  • Winkelmann G. 1986 Iron complex products. In: Rehm H-J, Reed G, Eds. Biotechnology Vol. 4. Weinheim, VCH Verlagsgesellschaft, 215-243.

    Google Scholar 

  • Winkelmann G. 1991 In: Winkelmann G, ed. Handbook of Microbial Iron Chelates (Siderophores). Boca Raton, FL, CRC Press.

    Google Scholar 

  • WHO Press release 31. 1993 In: Bundesgesundheitsblatt 8. 1993. 337.

  • Zhang Y, Heym B, Allen B, Young D, Cole S. 1992 The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358, 591-593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzanke, B.F., Böhnke, R., Möllmann, U. et al. Transport and utilization of rhizoferrin bound iron in Mycobacterium smegmatis. Biometals 12, 315–321 (1999). https://doi.org/10.1023/A:1009274415607

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009274415607

Navigation