Skip to main content
Log in

Isosorbide-2-Mononitrate Reduces the Consequences of Myocardial Ischaemia, Including Arrhythmia Severity: Implications for Preconditioning

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The effects of the intracoronary administration of isosorbide-2-mononitrate (ISMN; 3 μg kg−1 min−1), a major metabolite of isosorbide dinitrate, were examined in chloralose-urethane anaesthetized dogs before and during a 25 min, acute occlusion of the left anterior descending coronary artery. The only significant haemodynamic effects of ISMN administration were a slight (−11 ± 2 mmHg) decrease in arterial blood pressure and a decrease (<12%) in diastolic coronary vascular resistance. Coronary occlusion in the presence of ISMN led to a markedly reduced incidence and severity of ventricular arrhythmias compared to those in control, saline-infused dogs. There were fewer ectopic beats (62 ± 35 versus 202 ± 72; p < 0.05), a lower incidence (25% versus 75%; p < 0.05) and number of episodes (0.7 ± 0.4 versus 4.3 ± 2.1; p < 0.05) of ventricular tachycardia and fewer dogs fibrillated during the ischaemic period (17% versus 82%; p < 0.05). More dogs given ISMN survived the combined ischaemia-reperfusion insult (50% versus 0%; p < 0.05). Changes in ST-segment elevation (recorded by epicardial electrodes) and in the degree of inhomogeneity of electrical activation within the ischaemic area were much less pronounced throughout the occlusion period in dogs given ISMN. These results add weight to the hypothesis that the previously reported antiarrhythmic effects of ischaemic preconditioning, and of the intracoronary administration of nicorandil, involve nitric oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Végh Á, György K, Papp JGy, Parratt JR. Nicorandil suppresse ventricular arrhythmias in a canine model of myocardial ischaemia. Eur J Pharmacol 1996;305:163-168.

    Google Scholar 

  2. Végh Á, Papp JGy, György K, Kaszala K, Parratt JR. Does the opening of ATP-sensitive K+ channels modify ischaemiainduced ventricular arrhythmias in anaesthetised dogs? Eur J Pharmacol 1997;333:33-38.

    Google Scholar 

  3. Végh Á, Szekeres L, Parratt JR. Preconditioning of the ischaemic myocardium; involvement of the L-arginine nitric oxide pathway. Br J Pharmacol 1992;107:648-652.

    Google Scholar 

  4. Parratt JR, Végh Á. Endothelial cells, nitric oxide and ischaemic preconditioning. Basic Res Cardiol 1996;91:27-30.

    Google Scholar 

  5. Kis A, Végh A, Papp JGy, Parratt JR. Pacing-induced delayed protection against arrhythmias is attenuated by aminoguanidine, an inhibitor of nitric oxide synthase. Br J Pharmacol 1999;127:1545-1550.

    Google Scholar 

  6. Kis A, Végh A, Papp JGy, Parratt JR. Repeated cardiac pacing extends the time during which canine hearts are protected against ischaemia-induced arrhythmias: role of nitric oxide. J Mol Cell Cardiol 1999;31:1229-1241.

    Google Scholar 

  7. Parratt JR, Végh Á, Zeitlin IJ, et al. Bradykinin and endothelial-cardiac myocyte interactions in ischaemic preconditioning. Am J Cardiol 1997;80(3A):124A-131A.

    Google Scholar 

  8. Parratt JR, Végh Á. Coronary vascular endothelium, preconditioning and arrhythmogenesis. In: Lewis MJ, Shah AM, eds. Endothelial Modulation of Cardiac Function. Harwood Academic Publishers, Amsterdam 1997:237-255.

    Google Scholar 

  9. Kukovetz WR, Holzmann S, Romarin C. Mechanism of vasodilation by nitrates: role of cyclic GMP. Cardiology 1987;74 (suppl 1):12-19.

    Google Scholar 

  10. Sisenwine SF, Ruelius HW. Plasma concentration and urinary excretion of isosorbide dinitrate and its metabolites in the dog. J Pharmacol Exp Ther 1971;176:296-301.

    Google Scholar 

  11. Stauch M, Grewe N. Die Wirkung von Isosorbiddinitrat, Isosorbid-2-und 5-Mononitrat auf das Belastungs-EKG und auf die Hämodinamik während Vorhofsstimulation bei Patienten mit Angina Pectoris. Z Kardiol 1979;68:687-693.

    Google Scholar 

  12. Tauchert M, Jansen W. Development of mononitrates. Cardiology 1987;74(suppl. 1):3-5.

    Google Scholar 

  13. Pipilis A, Flather M, Collins R, et al. Effects on ventricular arrhythmias of oral captopril and of oral mononitrate started early in acute myocardial infarction: results of randomized placebo contolled trial. Br Heart J 1993;69:161-165.

    Google Scholar 

  14. Bogaert MG, Rosseel MT. Vascular effects of the dinitrate and mononitrate esters of isosorbide, isomannide and isoiodide. Arch Pharmacol 1972;275:339-344.

    Google Scholar 

  15. Wendt RL. Systemic and coronary vascular effects of the 2-and the 5-mononitrate esters of isosorbide. J Pharmacol Exp Ther 1972;180:732-742.

    Google Scholar 

  16. DeCaterina R, Lombardi M, Bernini W, et al. Inhibition of platelet function during in vivo infusion of isosorbide mononitrates: relationship between plasma drug concentration and hemodynamic effects. Am Heart J 1990;119:855-862.

    Google Scholar 

  17. DeCaterina R, Giannessi D, Mazzone A, Bernini W. Mechanism for the in vivo antiplatelet effects of isosorbide dinitrate. Eur Heart J 1988;9(suppl. A):45-49.

    Google Scholar 

  18. Strein K, Sponer G, Bartsch W, Müller-Beckman B, Dietmann K. Electrocardiographic analysis of the effects of isosorbide-5-mononitrate on regional myocardial ischemia in conscious dogs. J Pharmacol Exp Ther 1984;229:787-792.

    Google Scholar 

  19. Bacher S, Kraupp O, Beck A, Skoda H, Raberger G. Characterisation of vasodilators by comparison of their effects on blood pressure, counterregulation and myocardial oxygen demand in conscious normotensive dogs. Arzneim-Forch/Drug Res 1985;35:288-291.

    Google Scholar 

  20. Leitold Von M, Laufer H. Vergleichende antianginöse, hamodynamische und pharmakokinetische Wirkung von Isosorbid-2-mononitrat und Isosorbiddinitrat an der Ratte. Arzneim-Forsch/Drug Res 1983;33:1117-1121.

    Google Scholar 

  21. Végh Á, Komori S, Szekeres L, Parratt JR. Antiarrhythmic effects of preconditioning in anaesthetised dogs and rats. Cardiovasc Res 1992;26:487-495.

    Google Scholar 

  22. Kent KM, Smith ER, Redwood DR, Epstein SE. Beneficial electrophysiologic effects of nitroglycerin during acute myocardial infarction. Am J Cardiol 1974;33:513-516.

    Google Scholar 

  23. Stockmann MB, Verrier RL, Lown B. Effect of nitroglycerin on vulnerability to ventricular fibrillation during myocardial ischaemia and reperfusion. Am J Cardiol 1979;43:233-238.

    Google Scholar 

  24. Levites R, Boderheimer MM, Helfant RH. Electrophysiologic effects of NTG during experimental coronary occlusion. Circulation 1975;52:1050-1055.

    Google Scholar 

  25. Borer JS, Kent KM, Goldstein RE, Epstein SE. Nitroglycerin-induced reduction in the incidence of spontaneus ventricular fibrillation during coronary artery occlusion in dogs. Am J Cardiol 1974;33:517-520.

    Google Scholar 

  26. Margonato A, Bonetti F, Mailhac A, Vicedomini G, Cianflone C, Chierchia SL. Intravenous nitroglycerin suppresses exercise-induced arrhythmias in patients with ischaemic heart disease: implications for long-term treatment. Eur Heart J 1991;12:1278-1282.

    Google Scholar 

  27. Mihalick MJ, Rasmusson S, Knoebel SB. The effect of nitroglycerin on premature ventricular complexes in acute myocardial infarction. Am J Cardiol 1974;33:157(abstr).

    Google Scholar 

  28. Kane KA, Parratt JR, Williams FM. An investigation into the characteristics of reperfusion-induced arrhythmias in the anaesthetised rat and their susceptibility to antiarrhythmic agents. Br J Pharmacol 1984;82:349-357.

    Google Scholar 

  29. Barnes CS, Coker SJ. Failure of nitric oxide donors to alter arrhythmias induced by acute myocardial ischaemia or reperfusion in anaesthetized rats. Br J Pharmacol 1995;114:349-356.

    Google Scholar 

  30. Bilinska M, Maczewski M, Beresewicz A. Donors of nitric oxide mimic effects of ischaemic preconditioning on reperfusion-induced arrhythmias in isolated rat heart. Mol Cell Biochem 1996;160-161:265-271.

    Google Scholar 

  31. Marshall RJ, Parratt JR. Drug-induced changes in bloodflow in the acutely ischaemic canine myocardium: relationship to subendocardial driving pressure. Clin Exp Pharmacol Physiol 1974;1:99-112.

    Google Scholar 

  32. Végh Á, Papp JGy, Szekeres L, Parratt JR. The local administration of methylene blue prevents the pronounced antiarrhythmic effect of ischaemic preconditioning. Br J Pharmacol 1992;107:910-911.

    Google Scholar 

  33. Siegfried MR, Erhardt J, Rider T, Ma X-L, Lefer A. Cardioprotection and attenuation of endothelial dysfunction by organic nitric oxide donors in myocardial ischemia-reperfusion. J Pharmacol Exper Ther 1992;260:668-675.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

György, K., Végh, Á., Rastegar, M.A. et al. Isosorbide-2-Mononitrate Reduces the Consequences of Myocardial Ischaemia, Including Arrhythmia Severity: Implications for Preconditioning . Cardiovasc Drugs Ther 14, 481–488 (2000). https://doi.org/10.1023/A:1007832921391

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007832921391

Navigation