Skip to main content
Log in

Controlled Release of Liposomes from Biodegradable Dextran Microspheres: A Novel Delivery Concept

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To design liposome-loaded microspheres, which release theliposomes in a time-controlled manner and in intact form.

Methods. Liposomes were encapsulated in biodegradabledextran-based microspheres, which were prepared using an aqueous two phasesystem consisting of poly(ethylene glycol) and methacrylated dextran.The effects of liposome size and membrane fluidity, microsphere watercontent, degree of methacrylate substitution, and type of dextranderivative used, on encapsulation efficiency, release, and integrity of theliposomes were investigated.

Results. Liposomes were entrapped in dextran-based microspheresquantitatively and with full preservation of their integrity. Liposomeswith a low, as well as with a high membrane fluidity, were releasedfrom the microspheres in their intact form and with preservation oftheir size. Release kinetics depended only on the degradation rate ofthe microspheres. For rapidly degrading systems, pulsed release wasobserved and the time after which the pulse occurred (from 5 until 25days) could be tailored by the gel characteristics such as initial watercontent, degree of methacrylate substitution, and type of hydrolyticallysensitive spacer present in the cross-links. This delay time was notdependent on the size of the liposomes in the range studied(0.1–0.2 μm). Microspheres which degraded more slowly showed, after a certaindelay time, sustained release of the liposomes extended up to 100 days.

Conclusions. A novel drug delivery concept based on the encapsulationof liposomes in biodegradable dextran-based microspheres wasdesigned. The system released the liposomes in intact form in acontrolled way after a prolonged period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Storm and D. J. A. Crommelin. Liposomes: quo vadis? Pharm. Sci. Techn. Today 1:19–31 (1998).

    Google Scholar 

  2. A. A. Gabizon. Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv. Drug Deliv. Rev. 16:285–294 (1995).

    Google Scholar 

  3. J. J. Bergers, W. den Otter, H. F. J. Dullens, C. T. M. Kerkvliet, and D. J. A. Crommelin. Interleukin-2-containing liposomes: interaction of interleukin-2 with liposomal bilayers and preliminary studies on application in cancer vaccines. Pharm. Res. 10:1715–1721 (1993).

    Google Scholar 

  4. J. L. M. Heeremans, H. R. Gerritsen, S. P. Meusen, F. W. Mijnheer, R. S. Gangaram Panday, R. Prevost, C. Kluft, and D. J. A. Crommelin. The preparation of tissue-type plasminogen activator (t-PA) containing liposomes: entrapment efficiency and ultracentrifugation data. J. Drug Targeting 3:301–310 (1995).

    Google Scholar 

  5. I. Rutenfranz, A. Bauer, and H. Kirchner. Pharmacokinetic study of liposome-encapsulated human interferon-gamma after intravenous and intramuscular injection in mice. J. Interferon Res. 10:337–341 (1990).

    Google Scholar 

  6. M. L. van Slooten, G. Storm, A. Zoephel, Z. Küpcü, O. Boerman, D. J. A. Crommelin, E. Wagner and R. Kircheis. Liposomes containing interferon-gamma as adjuvant in tumor cell vaccines. Pharm. Res. 17:42–48 (1999).

    Google Scholar 

  7. F. Kadir, W. M. C. Eling, D. J. A. Crommelin, and J. Zuidema. Kinetics and prophylactic efficacy of increasing dosages of liposome encapsulated chloroquine after intramuscular injection in mice. J. Controlled Rel. 20:47–54 (1992).

    Google Scholar 

  8. K. R. Kamath and K. Park. Biodegradable hydrogels in drug delivery. Adv. Drug Deliv. Rev. 11:59–84 (1993).

    Google Scholar 

  9. W. E. Hennink, H. Talsma, J. C. H. Borchert, S. C. de Smedt, and J. Demeester. Controlled release of proteins from dextran hydrogels. J. Controlled Rel. 39:47–55 (1996).

    Google Scholar 

  10. W. N. E. van Dijk-Wolthuis, J. A. M. Hoogeboom, M. J. van Steenbergen, S. K. Y. Tsang, and W. E. Hennink. Degradation and release behavior of dextran-based hydrogels. Macromolecules 30:4639–4645 (1997).

    Google Scholar 

  11. O. Franssen, O. P. Vos, and W. E. Hennink. Delayed release of a model protein from enzymatically-degrading dextran hydrogels. J. Controlled Rel. 44:237–245 (1997).

    Google Scholar 

  12. O. Franssen, R. J. H. Stenekes, and W. E. Hennink. Controlled release of a model protein from enzymatically degrading dextran microspheres. J. Controlled Rel. 59:219–228 (1999).

    Google Scholar 

  13. O. Franssen, L. Vandervennet, P. Roders, and W. E. Hennink. Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres. J. Controlled Rel. 60: 211–221 (1999).

    Google Scholar 

  14. J. A. Cadée, M. J. A. van Luyn, L. A. Brouwer, J. A. Plantinga, P. B. van Wachem, C. J. de Groot, W. den Otter, and W. E. Hennink. In vivo biocompatibility of dextran-based hydrogels. J. Biomed. Mater. Res. in press: (2000).

  15. O. Franssen and W. E. Hennink. A novel preparation method for polymeric microparticles without the use of organic solvents. Int. J. Pharm. 168:1–7 (1998).

    Google Scholar 

  16. R. J. H. Stenekes, O. Franssen, E. M. G. van Bommel, D. J. A. Crommelin, and W. E. Hennink. The preparation of dextran microspheres in an all-aqueous system: Effect of the formulation parameters on particle characteristics. Pharm. Res. 15:557–561 (1998).

    Google Scholar 

  17. M. C. Manning, K. Patel, and R. T. Borchardt. Stability of protein pharmaceuticals. Pharm. Res. 6:903–915 (1989).

    Google Scholar 

  18. A. L. Weiner, S. S. Carpenter-Green, E. C. Soehngen, R. P. Lenk, and M. C. Popescu. Liposome-collagen gel matrix: a novel sustained drug delivery system. J. Pharm. Sci. 74:922–925 (1985).

    Google Scholar 

  19. S. Cohen, H. Bernstein, C. Hewes, M. Chow, and R. Langer. The pharmacokinetics of, and humoral responses to, antigen delivered by microencapsulated liposomes. Proc. Natl. Acad. Sci. USA 88:10440–10444 (1991).

    Google Scholar 

  20. P. G. Kibat, Y. Igari, M. A. Wheatley, H. N. Eisen, and R. Langer. Enzymatically activated microencapsulated liposomes can provide pulsatile drug release. FASEB Journal 4:2533–2539 (1990).

    Google Scholar 

  21. C. Oussoren, J. Zuidema, D. J. A. Crommelin, and G. Storm. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection. Biochim. Biophys. Acta 1328:261–272 (1997).

    Google Scholar 

  22. W. N. E. van Dijk-Wolthuis, J. J. Kettenes-van den Bosch, A. van der Kerk-van Hoof, and W. E. Hennink. Reaction of dextran with glycidyl methacrylate: an unexpected transesterification. Macromolecules 30:3411–3413 (1997).

    Google Scholar 

  23. W. N. E. van Dijk-Wolthuis, S. K. Y. Tsang, J. J. Kettenes-van den Bosch, and W. E. Hennink. A new class of polymerizable dextran with hydrolyzable groups: hydroxyethyl methacrylated dextran with and without oligolactate spacer. Polymer 38:6235–6242 (1997).

    Google Scholar 

  24. J. A. Cadée, M. de Kerf, C. J. de Groot, W. den Otter, and W. E. Hennink. Synthesis, characterization of 2-(methacryloyloxy)e-thyl-(di-)L-lactate and their application in dextran-based hydrogels. Polymer 40:6877–6881 (1999).

    Google Scholar 

  25. T. M. Allen. Calcein as a tool in liposome methodology. In G. Gregoriadis (eds.), Liposome Technology, CRC Press, Boca Raton, Florida, 1984 pp. 178–182.

    Google Scholar 

  26. G. Rouser, S. Flusher, and A. Yamamoto. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorous analysis of spots. Lipids 5:494–496 (1970).

    Google Scholar 

  27. R. J. H. Stenekes and W. E. Hennink. Equilibrium water content of microspheres based on cross-linked dextran. Int. J. Pharm. 189:131–135 (1999).

    Google Scholar 

  28. D. J. A. Crommelin and E. M. G. van Bommel. Stability of liposomes on storage: freeze dried, frozen or as an aqueous dispersion. Pharm. Res. 1:159–163 (1984).

    Google Scholar 

  29. W. N. E. van Dijk-Wolthuis, M. J. van Steenbergen, W. J. M. Underberg, and W. E. Hennink. Degradation kinetics of methacrylated dextrans in aqueous solution. J. Pharm. Sci. 86:413–417 (1997).

    Google Scholar 

  30. J. Eldridge, C. Hammond, J. Meulbroek, J. Staas, R. Gilley, and R. Tice. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the peyer's patches. J. Controlled Rel. 11:205–214 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenekes, R.J.H., Loebis, A.E., Fernandes, C.M. et al. Controlled Release of Liposomes from Biodegradable Dextran Microspheres: A Novel Delivery Concept. Pharm Res 17, 664–669 (2000). https://doi.org/10.1023/A:1007526114744

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007526114744

Navigation