Skip to main content
Log in

Thermal analysis of the plasma membrane Ca2+-ATPase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The plasma membrane Ca2+-ATPase is a well known enzyme in eucaryotes able to extrude calcium to the extracellular space in order to restore intracellular calcium to very low levels. This ATPase needs plasma membrane lipids such as acidic phospholipids in order to maintain its activity. In this study, we investigated the role that calcium and cholesterol play on the thermal stability of the Ca2+-ATPase isolated from cardiac sarcolemma and erythrocyte membranes. Calcium showed a stabilizing and protective effect when the enzyme was exposed to high temperatures. This stabilizing effect showed by calcium was potentiated in the presence of cholesterol. These protection effects were reflected on several thermodynamic parameters such as T50, ▵Hvh and apparent ▵G, indicating that calcium might induce a conformational change stabilized in the presence of cholesterol that confers enzyme thermostability. The effect shown by cholesterol on ▵Hvh and apparent ▵H open the possibility that this lipid decreases cooperativity during the induced transition. Despite that a binding site for cholesterol has not been identified in the plasma membrane Ca2+-ATPase, our results supports the proposal that this lipid interacts with the enzyme in a direct fash

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carafoli E: Intracellular calcium homeostasis. Ann Rev Biochem 56: 395-433, 1987

    Google Scholar 

  2. Rega AF, Garrahan PJ: The calcium pump of plasma membranes. CRC Press, Boca Raton Fl, 1985, pp. 173

    Google Scholar 

  3. Carafoli E: Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J 8: 993-1002, 1994

    Google Scholar 

  4. Carafoli E, Zurini M: The Ca2+ pumping ATPase of plasma membranes. Purification, reconstitution and properties. Biochim Biophys Acta 683: 279-301, 1982

    Google Scholar 

  5. Ortega A, Mas-Oliva J: Cholesterol Effect on Enzyme Activity of the Sarcolemmal (Ca2+ + Mg2+)-ATPase from Cardiac Muscle. Biochim Biophys Acta 773: 231-236, 1984

    Google Scholar 

  6. Ortega A, Mas-Oliva J: Direct Regulatory Effect of Cholesterol on the Calmodulin Stimulated Calcium Pump of Cardiac Sarcolemma. Biochem Biophys Res Commun 139: 868-874, 1986

    Google Scholar 

  7. Mas-Oliva J, Santiago-García J: Cholesterol Effect on Thermostability of the (Ca2+,Mg2+)-ATPase from Cardiac Muscle Sarcolemma. Biochem Int 21: 233-241, 1990

    Google Scholar 

  8. Ortega A, Santiago-García J, Mas-Oliva J, Lepock JR: Cholesterol increases the thermal stability of the Ca2+/Mg2+-ATPase of cardiac microsomes. Biochem Biophys Acta 1283: 45-50, 1996

    Google Scholar 

  9. Cheng K-H, Hui SW, Lepock JR: Protection of the membrane calcium adenosine triphosphatase by cholesterol from thermal inactivation. Cancer Res 47: 1255-1262, 1987

    Google Scholar 

  10. Artigues A, Villar MT, Fernandez J, Farragut JA, Gonzalez-Ros JM: Cholesterol stabilizes the structure of the nicotinic acetylcholine receptor reconstituted in lipid vesicles. Biochim Biophys Acta 985: 325-330, 1989

    Google Scholar 

  11. Rotenberg M, Zakim D: Effects of cholesterol on the function and thermotropic properties of pure UDP-glucuronosyltransferase. J Biol Chem 266: 4159-4161, 1991

    Google Scholar 

  12. McNamee MG, Fong TM: In: R.C. Aloia (ed.) Lipid Domains and the Relatioship to Membrane Function. Vol. 2. Alan Liss, New York, 1988, pp 43-62

    Google Scholar 

  13. Morin PE, Diggs D, Freire E: Thermal stability of membranereconstituted yeast cytochrome c oxidase. Biochemistry 29: 781-788, 1990

    Google Scholar 

  14. Rigell CW, Freire E: Differential detergent solubility investigation of thermally induced transitions in cytochrome c oxidase. Biochemistry 26: 4366-4371, 1987

    Google Scholar 

  15. Lepock JR, Rodhal AM, Zhang C, Heynen ML, Waters B abd, Cheng K-H: Thermal denaturation of the Ca2+-ATPase of sarcoplasmic reticulum reveals two thermodynamically independent domains. Biochemistry 29: 681-689, 1990

    Google Scholar 

  16. Belli SI, Sali A, Goding JW: Divalent cations stabilize the conformation of plasma cell membrane glycoprotein Pc-1 (alkaline phosphodiesterase I). Biochem J 304: 75-80, 1994

    Google Scholar 

  17. Mitani M, Harushima Y, Kuwajima K, Ikeguchi M, Sugai S: Innocuous character of [ethylenebis (oxyethylenenitrilo)] tetraacetic acid and EDTA as metal-ion buffers in studying Ca2+ binding by alpha-lactalbumin. J Biol Chem 261: 8824-8829, 1986

    Google Scholar 

  18. Keitel T, Meldgaard M, Heinemann U: Cation binding to a Bacillus (1,3–1,4)-beta glucanase. Geometry, affinity and effect on protein stability. Eur J Biochem 222: 203-214, 1994

    Google Scholar 

  19. Pantoliano MW, Whitlow M, Wood JF, Rollence ML, Finzel BC, Gilliland GL, Poulos TL, Bryan PN: The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: subtilisin as a test case. Biochemistry 27: 8311-8317, 1988

    Google Scholar 

  20. Kuroki R, Taniyama Y, Seko C, Nakamura H, Kiruchi M, Ikehara M: Design and creation of a Ca2+ binding site in human lysozyme to enhance structural stability. Proc Natl Acad Sci USA 86: 6903-6907, 1989

    Google Scholar 

  21. Kuroki R, Kawakita S, Nakamura H, Yutani K: Entropic stabilization of a mutant human lysozyme induced by calcium binding. Proc Natl Acad Sci USA 89: 6803-6807, 1992

    Google Scholar 

  22. Roe JA, Butler A, Scholler DM, Valentine JS, Marky L, Breslauer KJ: Differential scanning calorimetry of Cu, Zn-superoxide dismutase, the apoprotein, and its zinc-substituted derivatives. Biochemistry 27: 950-958, 1988

    Google Scholar 

  23. Chlebowski JF, Mabrey S, Falk MC: Calorimetry of alkaline phosphatase stability of the monomer and effect of metal ion and phosphate binding on dimer stability. J Biol Chem 254: 5745-5753, 1979

    Google Scholar 

  24. Ordaz H, Sosa A, Romero I, Celis H: Thermostability and activation by divalent cations of the membrane-bound inorganic pyrophosphatase of Rhodospirillum rubrum. Int J Biochem 24: 1633-1638, 1992

    Google Scholar 

  25. Vetriani C, Maeder DL, Tolliday N, Yip K S-P, Stillman TJ, Britton KL, Rice DW, Klump HH, Robb FT: Protein thermostability above 100°C: A key role for ionic interactions. Proc Natl Acad Sci USA 95: 12300-12305, 1998

    Google Scholar 

  26. Richards FM: Protein stability: Still an unsolved problem. Cell Mol Life Sci 53: 790-802, 1997

    Google Scholar 

  27. Querol E, Perez-Pons JA, Mozo-Villarias A: Analysis of protein conformational characteristics related to thermostability. Prot Eng 9: 265-271, 1996

    Google Scholar 

  28. Alstyne E van, Burk R, Knickelbein R, Hungerford R, et al: Isolation of seales vesicles highly enriched with sarcolemma markers from canine ventricle. Biochim Biophys Acta 602: 131-143, 1980

    Google Scholar 

  29. Oliva-Ramírez G: Master of Sciences Thesis: Regulación Cinética de los Intermediarios Fosforilados de la ATPasa-(Ca2+,Mg2+) de Sarcolema Cardíaca por Calmodulina. Faculty of Medicine, National Autonomus University of Mexico, 1996

  30. Delgado-Coello B, Mas-Oliva J: Lead affects the formation of the phosphorylated intermediate on the (Ca2+, Mg2+)-ATPase from human erythrocytes. Med Sci Res 24: 159-161, 1996

    Google Scholar 

  31. Niggli V, Adunyah ES, Carafoli E: Acidic phospholipids, unstaurated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+-ATPase. J Biol Chem 256: 8588-8592, 1981

    Google Scholar 

  32. Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA: An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100: 95-97, 1979

    Google Scholar 

  33. Fabiato A: Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing metals and ligands. Meth Enzymol 157: 378-416, 1988

    Google Scholar 

  34. Bensandoun A, Wenstein D: Assay of proteins in the presence of interfering materials. Anal Biochem 70: 241-250, 1976

    Google Scholar 

  35. Hofmann F, James P, Vorherr T, Carafoli E: The C-terminal domain of the plasma membrane Ca2+ pump contains three high affinity Ca2+ binding sites. J Biol Chem 268: 10252-10259, 1993

    Google Scholar 

  36. Nakamoto RK, Inesi G: Retention of ellipticity between enzymatic states of the Ca2+-ATPase of sarcoplasmic reticulum. FEBS Lett 194: 258-262, 1986

    Google Scholar 

  37. Clarke DM, Loo TW, Inesi G, MacLennan DH: Location of high affinity Ca2+ binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature 339: 476-478, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santiago-García, J., Delgado-Coello, B. & Maas-Oliva, J. Thermal analysis of the plasma membrane Ca2+-ATPase. Mol Cell Biochem 209, 105–112 (2000). https://doi.org/10.1023/A:1007182907274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007182907274

Navigation