Skip to main content
Log in

Analysis of agalacto-IgG in rheumatoid arthritis using surface plasmon resonance

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

It is well established that IgG from rheumatoid arthritis (RA) patients are less galactosylated than IgG from normal individuals. Determination of agalacto-IgG may therefore aid in diagnosis and treatment of RA. The decrease in galactosylation of IgG leads to an increase in terminal N-acetylglucosamine residues, which can be detected using a specific lectin from Psathyrella velutina. In the present study IgG from RA and control serum was purified using affinity chromatography. The samples were then, after reduction, analyzed on a BIOCORE® 2000 system with immobilized Psathyrella velutina lectin. Using this technique it was possible to discriminate between IgG from RA patients and IgG from control individuals with respect to its content of IgG with terminal N-acetylglucosamine. The affinity biosensor technique makes it possible to detect binding without labeling or using secondary antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varki A, Biological roles of oligosaccharides: all of the theories are correct, Glycobiology 3, 97–130 (1993).

    Google Scholar 

  2. Turner GA, N-Glycosylation of serum proteins in disease and its investigation using lectins, Clin Chim Acta 208, 149–71 (1992).

    Google Scholar 

  3. Kim YJ, Varki A, Perspectives on the significance of altered glycosylation of glycoproteins in cancer, Glycoconjugate J 14, 569–76 (1997).

    Google Scholar 

  4. Cummings RD In Methods in enzymology, edited by Lennarz WJ, Hart GW, Vol. 230, (San Diego, Academic Press, Inc, 1994), pp. 66–87.

    Google Scholar 

  5. Liedberg B, Lundström I, Stenberg E, Principles of biosensing with an extended coupling matrix and surface plasmon resonance, Sens Actuators B 11, 63–72 (1993).

    Google Scholar 

  6. Yeung D, Gill A, Maule CH, Davies RJ, Detection and quanti-fication of biomolecular interactions with optical biosensors, TIAC 14, 49–56 (1995).

    Google Scholar 

  7. Jönsson U, Fägerstam L, Ivarsson B, Johnsson B, Karlsson R, Lundh K, Löfås S, Persson B, Roos H, Rönnberg I, Sjölander S, Stenberg E, Ståhlberg R, Urbaniczky C, Östlin H, Malmqvist M, Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology, Biotechniques 11, 620–7 (1991).

    Google Scholar 

  8. Karlsson R, Roos H, Fägerstam L, Persson B, Kinetic and concentration analysis using BIA technology, Methods: a comparison to Meth Enzymol 6, 99–110 (1994).

    Google Scholar 

  9. Fägerstam LG, Frostell-Karlsson Å, Karlsson R, Persson B, Rönnberg I, Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis, J Chromatogr 597, 397–410 (1992).

    Google Scholar 

  10. Karlsson R, Fägerstam L, Nilshans H, Persson B, Analysis of active antibody concentration. Separation of affinity and concentration parameters, J Immunol Meth 166, 75–84 (1993).

    Google Scholar 

  11. Shinohara Y, Kim F, Shimizu M, Goto M, Tosu M, Hasegawa Y, Kinetic measurement of the interaction between an oligosaccharide and lectins by a biosensor based on surface plasmon resonance, Eur J Biochem 223, 189–94 (1994).

    Google Scholar 

  12. Blikstad I, Fägerstam LG, Bhikhabhai R, Lindblom H, Detection and characterization of oligosaccharides in column effluents using surface plasmon resonance, Anal Biochem 223, 42–9 (1996).

    Google Scholar 

  13. Okazaki I, Hasegawa Y, Shinohara Y, Kamasaki T, Determination of the interactions between lectins and glycoproteins by surface plasmon resonance, J Mol Recognition 8, 95–9 (1995).

    Google Scholar 

  14. Hutchinson AM, Characterization of glycoprotein oligosaccharides using surface plasmon resonance, Anal Biochem 220, 303–7 (1994).

    Google Scholar 

  15. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K, Takeuchi F, Nagano Y, Miyamoto T, Kobata A, Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG, Nature 316, 452–7 (1985).

    Google Scholar 

  16. Mullinax F, Abnormality of IgG structure in rheumatoid arthritis and systemic lupus erythematosus, Arthritis Rheum 18, 417–8 (1975).

    Google Scholar 

  17. Tsuchiya N, Endo T, Matsuta K, Yoshinoya S, Takeuchi F, Nagano Y, Shiota M, Furukawa K, Kochibe N, Ito K, Kobata A, Detection of glycosylation abnormality in rheumatoid IgG using N-acetylglucosamine-specific Psathyrella velutina lectin J Immunol 151, 1137–46 (1993).

    Google Scholar 

  18. Roitt IM, Dwek RA, Parekh RB, Rademacher TW, Alavi A, Axford J, Bodman K, Bond A, Cooke A, Hay FC, Isenberg D, Lydyard P, Mackenzie L, Rook G, Smith M, Sumar N, Changes in carbohydrate structure of IgG in rheumatoid arthritis, Recenti Prog Med 79, 314–7 (1988).

    Google Scholar 

  19. Sumar N, Bodman KB, Rademacher TW, Dwek RA, Williams P, Parekh RB, Edge J, Rook GAW, Isenberg DA, Hay FC, Roitt IM, Analysis of glycosylation changes in IgG using lectins J Immunol Meth 131, pp 127–36 (1990).

    Google Scholar 

  20. Tang W, Matsumoto A, Shikata K, Takeuchi F, Konishi T, Nakata M, Mizuochi T, Detection of disease-specific augmentation of abnormal immunoglobulin G in sera of patients with rheumatoid arthritis, Glycoconjugate J 15, 929–34 (1998).

    Google Scholar 

  21. Kochibe N, Matta KL, Purification and properties of an Nacetylglucosamine-specific lectin from Psathyrella velutina mushroom, J Biol Chem 264, 173–7 (1989).

    Google Scholar 

  22. Endo T, Ohbayashi H, Kanazawa K, Kochibe N, Kobata A, Carbohydrate binding specificity of immobilized Psathyrella velutina lectin, J Biol Chem 267, 707–13 (1992).

    Google Scholar 

  23. Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W (eds) Current protocols in immunology, NY, John Wiley & Sons, Inc. (1997).

    Google Scholar 

  24. Johnsson B, Löfås S, Lindquist G, Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors, Anal Biochem 198, 268–77 (1991).

    Google Scholar 

  25. Sawardeker JS, Sloneker JH, Jeanes A, Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography, Anal Chem 37, 1602–4 (1965).

    Google Scholar 

  26. Tomana M, Schrohenloher RE, Koopman WJ, Alarcón GS, Paul WA, Abnormal glycosylation of serum IgG from patients with chronic in¯ammatory diseases, Arthritis Rheum 31, 333–8 (1988).

    Google Scholar 

  27. Bond A, Jones MG, Hay FC, Human IgG preparations isolated by ion-exchange or protein G affinity chromatography differ in their glycosylation profiles, J Immunol Meth 166, 27–33 (1993).

    Google Scholar 

  28. Sutton BJ, Phillips DC, The three-dimensional struture of the carbohydrate within the Fc fragment of immunoglobulin G, Biochem Soc Trans 11, 130–2 (1983).

    Google Scholar 

  29. van Zeben D, Rook GA, Hazes JM, Zwinderman AH, Zhang Y, Ghelani S, Rademacher TW, Breedveld FC, Early agalactosylation of IgG is associated with a more progressive disease course in patients with rheumatoid arthritis: results of a follow-up study, Br J Rheumatol 33, 36–43 (1994).

    Google Scholar 

  30. Parekh R, Roitt I, Isenberg D, Dwek R, Rademacher T, Agerelated galactosylation of the N-linked oligosaccharides of human serum IgG, J Exp Med 167, 1731–6 (1988).

    Google Scholar 

  31. Laurell C-B, Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies, Anal Biochem 15, 45–52 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liljeblad, M., Lundblad, A. & Påhlsson, P. Analysis of agalacto-IgG in rheumatoid arthritis using surface plasmon resonance. Glycoconj J 17, 323–329 (2000). https://doi.org/10.1023/A:1007169621518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007169621518

Navigation