Skip to main content
Log in

Efficiency of expression of transfected genes depends on the cell cycle

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Lipofection, a lipid-mediated DNA transfection procedure, was used to transfect synchronized L929 mouse fibroblast cells with a reporter plasmid containing the bacterial chloramphenicol acetyltransferase gene. The efficiency of gene expression was investigated on transfection of cells at different stages of the cell cycle. Our data show that expression of the reporter gene was minimal when transfection was performed in G0-phase and parallel experimental data disproved the possibility that the reduced expression observed was due to differential uptake at different times in the cell cycle. Investigation into the condensation state of the plasmid has shown that the low chloramphenicol acetyltransferase gene expression could be a direct consequence of the packaging of the plasmid into condensed chromatin when transfection occurs in G0-phase. The inactivation of the reporter gene is not reversed by growth of the cells in high serum or by treatment with Trichostatin A, a specific inhibitor of histone deacetylase, suggesting that the inactive chromatin formed in G0-phase cells lacks associated histone acetylase activity. In contrast, the high activity seen when cells in S-phase are transfected is enhanced even further by treatment with Trichostatin A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ledley FD (1995) Hum. Gene Ther. 6: 1129–1144

    Google Scholar 

  2. Boulikas T (1996) Int. J. Onc. 9: 1239–1251

    Google Scholar 

  3. Boulikas T. (1996) Gen. Ther. Mol. Biol. 1: 1–172

    Google Scholar 

  4. Boulikas T. (1996) Oncology reports 3: 1–7

    Google Scholar 

  5. Scheule RK & Cheng SH (1996) ‘Gene Therapy’ (Eds by Lemoine NR & Cooper DN) pp. 93–112. Bios Scientific Publishers

  6. Yew NS, Wysokenski DM, Wang KX, Ziegler RJ, Marshall J, McNeilley D, Cherry M, Osburn W & Cheng SH (1997) Hum. Gene Ther. 8: 575–584

    Google Scholar 

  7. Dong J-Y, Wang D, van Ginkel FW, Pascrual D & Frizzell, RA (1996) Hum. Gen. Ther. 7: 319–331

    Google Scholar 

  8. Fink DJ, DeLuca NA, Goins WF & Glorioso JC (1996) Annu. Rev. Neurosci. 19: 256–287

    Google Scholar 

  9. Sanding V, Hofmann C, Steinert S, Jennings G, Schlag P & Strauss M (1996) Hum. Gene Ther. 7: 1937–1945

    Google Scholar 

  10. Feero WG, Rosemblat JD, Huard J, Watkins SC, Epperly M, Clemens PR, Kochanek S, Glorioso JC, Patridge TA & Hoffman, EP (1997) Hum. Gene Ther. 8: 371–380

    Google Scholar 

  11. Chu TH-T & Dornburg R (1995) J. Virol. 69: 2659–2663

    Google Scholar 

  12. Chu TH-T & Dornburg R (1997) J. Virol. 71: 720–725

    Google Scholar 

  13. Adams RLP (1993) In: ‘Cell Culture for Biochemists’ Eds by Burdon RH & van Knippenberg PH, pp. 142–146, Laboratory Techniques in Biochemistry and Molecular Biology Elsevier, Amsterdam.

    Google Scholar 

  14. Strain AJ, Wallace WAH & Wyllie AH (1985) Biochem. J. 225: 529–533

    Google Scholar 

  15. Goldstein S, Fordis CM & Howard B (1989) Nucl. Acids Res. 17: 3959–3971

    Google Scholar 

  16. Yorifuji T, Tsuruta S & Mikawa H (1989) FEBS Letter 245: 201–203

    Google Scholar 

  17. Takahashi M, Furukawa T, Nikkumi K, Aoki A, Nomoto N, Koike T, Moriyama Y, Shinada S & Shibata A (1991) Exp. Hematol. 19: 343–346

    Google Scholar 

  18. Zardo G, D'Erme M, Reale A, Strom R, Perilli M & Caiafa P (1997) Biochemistry 36: 7937–7943

    Google Scholar 

  19. Pelliciari C, Mangiarotti R, Bottone MG, Danova M & Wang E (1995) Cytometry 21: 329–337

    Google Scholar 

  20. Kass SU, Goddard JP & Adams RLP (1993) Mol. Cell. Biol. 13: 7372–7379

    Google Scholar 

  21. Caruso M, Martelli F, Giordano A & Felsani A (1993) Oncogene 8: 267–278

    Google Scholar 

  22. Seed B & Sheen J-Y (1998) Gene 67: 271–277

    Google Scholar 

  23. Felgner PL, Gader TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM & Danielsen M (1987) Proc. Natl. Acad. Sci. USA 84: 7413–7417

    Google Scholar 

  24. Ferrari S, Calabretta B, Battini R, Cosenza SL, Owen TA, Soprano KJ & Baserga R (1988) Exp. Cell. Res. 17: 25–33

    Google Scholar 

  25. Turner BM (1991) J. Cell Sci. 99: 13–20

    Google Scholar 

  26. Bradbury EM (1992) BioEssays 14: 9–16

    Google Scholar 

  27. Lee DY, Hayes JJ, Pruss D Wolffe AP (1993) Cell 72: 73–84

    Google Scholar 

  28. Li W, Nagaraja S, Delcuve GP, Hendzel MJ Davie JR (1993) Biochem. J. 269: 737–744

    Google Scholar 

  29. O'Neill LP & Turner BM (1995) EMBO J. 14: 3946–3957.

    Google Scholar 

  30. Studitsky VM, Clark DJ & Felsenfeld G (1995) Cell 83: 19–27

    Google Scholar 

  31. Mattews HR & Waterborb JH (1985) ‘The Enzymology of Post-Traslational Modification of Proteins’, Vol. 2, pp. 125–185, Academic Press, London

    Google Scholar 

  32. Hendzel MJ, Delcuve GP & Davie JR (1991) J. Biol. Chem. 266: 21942–63

    Google Scholar 

  33. Hendzel MJ, Sun J, Chen H, Rattner JB & Davie JR (1994) J. Biol. Chem. 269: 22894–901

    Google Scholar 

  34. Yoshida M, Kijima M, Akita M & Beppu T (1990) J. Biol. Chem. 265: 17174–17179

    Google Scholar 

  35. Yoshida M, Horinouchi S & Beppu T (1995) BioEssays 17: 423–430

    Google Scholar 

  36. Gorman CM & Howard BH (1983) Nucleic Acids Res. 11: 7631–7648

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marenzi, S., Adams, R.L., Zardo, G. et al. Efficiency of expression of transfected genes depends on the cell cycle. Mol Biol Rep 26, 261–267 (1999). https://doi.org/10.1023/A:1007009022336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007009022336

Navigation