Skip to main content
Log in

Heterogeneous patterns of oligodendroglial differentiation in the forebrain of the opossum: Didelphis marsupialis

  • Published:
Journal of Neurocytology

Abstract

The differentiation of oligodendrocytes in the forebrain of the opossum (Didelphis marsupialis) has been studied by the immunohistochemical identification of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) and by the autoradiographic detection of the uptake of 3H-thymidine. CNPase is expressed early in oligodendroglia somata and fibre sheaths (myelin) in the forebrain and its persistence in the cell bodies is regionally heterogeneous, being ephemeral in cells within the optic pathway, supraoptic decussation, and posterior commissure, of intermediate duration in the mamillo-thalamic fascicle, and stria medullaris, and long-lasting in other diencephalic and in telencephalic tracts. In the cerebral cortex, most CNPase + cells have small somata and multiple processes (types I and II). CNPase-expressing oligodendrocytes are also regionally heterogeneous in terms of proliferative capability, which could not be detected in forebrain tracts or diencephalon, but has appeared in a small proportion of cells in the neocortical white matter and in the fimbria. Our findings provide additional evidence in favour of the heterogeneity of oligodendrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amur-Umarjee, S. G., Dasu, R. G. & Campagnoni, A. T. (1990) Temporal expression of myelin specific components in neonatal mouse brain cultures: Evidence that 2′,3′-cyclic nucleotide 3′-phosphodiesterase appears prior to galactocerebroside. Developmental Neuroscience 12, 251–62.

    Google Scholar 

  • Ashwell, K. S., Waite, P. M. E. & Marotte, L.(1996) Ontogeny of the projection tracts and commissural fibres in the forebrain of the tammar wallaby (Macropus eugenii): Timing in comparison with other mammals. Brain Behavior and Evolution 17, 8–22.

    Google Scholar 

  • Barradas, P. C. & Cavalcante, L. A. (1997) Proliferation of differentiated glial cells in the brain stem. Brazilian Journal of Medical and Biological Research, in press.

  • Barradas, P. C., Gomes, S. S. & Cavalcante, L. A. (1995) CNPase expression in the developing opossum brainstem and cerebellum. NeuroReport 6, 289–92.

    Google Scholar 

  • Barres, B. A., Hart, I. K., Coles, H. S. R., Burne, J. F., Voyvodic, J. T., Richardson, W. D. & Raff, M. C. (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70, 31–46.

    Google Scholar 

  • Bjartmar, C., Hildebrand, C. & Loinder, K. (1994) Morphological heterogeneity of rat oligodendrocytes: Electron microscopic studies on serial sections. Glia 11, 235–44.

    Google Scholar 

  • Braun, P. E., Bambrick, L. L., Edwards, A. M. & Bernier, L. (1990) 2′,3′-cyclic nucleotide 3′-phosphodiesterase has characteristics of cytoskeletal proteins. A hypothesis for its function. Annals of the New York Academy of Sciences 605, 55–65.

    Google Scholar 

  • Braun, P. E., Sandillon, F., Edwards, A., Mathieu, J. M. & Privat, A. (1988) Immunocytochemical localization by electron microscopy of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in developing oligodendrocytes of normal and mutant brain. Journal of Neuroscience 8, 3057–66.

    Google Scholar 

  • Brophy, P. J. (1992) Interactions of lipids with proteins of myelin and its associated cytoskeleton. In Myelin: Biology and Chemistry (edited by Martenson, R. E.), pp. 197–212. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Butt, A. M., Ibrahim, M., Ruge, F. M. & Berry, M. (1995) Biochemical subtypes of oligodendrocyte in the anterior medullary velum of the rat as revealed by the monoclonal antibody Rip. Glia 14, 185–97.

    Google Scholar 

  • Cabana, T. & Martin, G. F. (1985) The development of commissural connections of somatic motor-sensory areas of neocortex in the North American opossum. Anatomy and Embryology 171, 121–8.

    Google Scholar 

  • Cavalcante, L. A. (1987) Postnatal neurogenesis and the formation of neural connections in the visual system of a marsupial. Pontificia Academia Scientiarum Scripta Varia 59, 1–29.

    Google Scholar 

  • Cavalcante, L. A. & Barradas, P. C. (1995) Astroglial differentiation and correlated neuronal changes in the opossum superior colliculus. In Neuron-Glia Interrelations during Phylogeny.I.Phylogeny and Ontogeny of Glial Cells (edited by Vernadakis, A. & Roots, B.), pp. 79–101. Totowa, NJ: Humana Press.

    Google Scholar 

  • Cavalcante, L. A., Barradas, P. C. & Martinez, A. M. B. (1991) Patterns of myelination in the opossum superior colliculus with additional reference to the optic tract. Anatomy and Embryology 183, 273–85.

    Google Scholar 

  • Colello, R. J., & Schwab, M. E. (1994) A role for oligodendrocytes in the stabilization of axon numbers. Journal of Neuroscience 14, 6446–52.

    Google Scholar 

  • del Rio Hortega, P. (1942) La neuroglia normal – Conceptos de angiogliona y neurogliona. Archivos de Histologia Normal y Patologica 1, 5–72.

    Google Scholar 

  • Dyer, C. A. & Benjamins, J. A. (1989) Organization of oligodendroglial membrane sheaths. I. Association of MBP and CNP with cytoskeleton. Journal of Neuroscience Research 24, 201–11.

    Google Scholar 

  • Gallyas, F. (1979) Silver staining of myelin by means of physical development. Neurological Research 1, 203–9.

    Google Scholar 

  • Ghooray, G. T. & Martin, G. F. (1993) The development of myelin in the spinal cord of the North American opossum and its possible role in loss of rubrospinal plasticity. A study using myelin basic protein and galactocerebroside immuno-histochemistry. Developmental Brain Research 72, 67–74.

    Google Scholar 

  • Hardy, R. & Reynolds, R. (1991) Proliferation and differentiation potential of rat forebrain oligodendroglial progenitors both in vitro and in vivo. Development 111, 1061–80.

    Google Scholar 

  • Hardy, R. J., Lazzarini, R. A., Colman, D. R. & Friedrich Jr., V. L. (1996) Distribution of myelin basic proteins reveals functional heterogeneity amongst oligodendrocytes. Developmental Neuroscience 18, 287.

    Google Scholar 

  • HARTMAN, B. K., AGRAWAL, C. H., AGRAWAL, D. & KALMBACH, S. (1982) Development and maturation of CNS myelin: comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes. Proceedings of the National Academy of Sciences USA 79, 4217–20.

    Google Scholar 

  • Jhaveri, S., Erzurumlu, R. S., Friedman, B. & Schneider, G. E. (1992) Oligodendrocytes and myelin formation along the optic tract of the developing hamster. Glia 6, 138–48.

    Google Scholar 

  • Kerlero de Rosbo, N., Carnegie, P. R. & Bernard, C. C. A. (1984) Detection of various forms of brain myelin basic protein in vertebrates by electroimmunoblotting. Neurochemical Research 9, 1359–69.

    Google Scholar 

  • Kerlero de Rosbo, N., Tsang, S. & Bernard, C. C. A. (1991) Comparative study of myelin basic protein isoforms in developing vertebrate central nervous system: Absence of 21.5-and 20.2-Kilodalton myelin basic proteins in chicken may point to their importance in mammalian myelinogenesis. Developmental Neuroscience 13, 34–40.

    Google Scholar 

  • Kibby, M. A., Wilson, P. D. & Fischer, T. M. (1988) Development of the optic nerve of the opossum (Didelphis virginiana). Developmental Brain Research 44, 37–48.

    Google Scholar 

  • Kirschner, D. A. & Blaurock, A. E. (1992) Organization, phylogenetic variations, and dynamic transitions of myelin. In Myelin: Biology and Chemistry (edited by Martenson, R. E.), pp. 3–80. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Kopriwa, B. M. & Leblond, C. P. (1962) Improvements in the coating technique of radioautography. Journal of Histochemistry and Cytochemistry 10, 269–84.

    Google Scholar 

  • Loo, Y. T. (1931) The forebrain of the opossum, Didelphis virginiana: Part II, Histology. Journal of Comparative Neurology 52, 1–148.

    Google Scholar 

  • Martin, G. F. (1967) Interneocortical connections in the opossum, Didelphis virginiana. Anatomical Record 157, 607–16.

    Google Scholar 

  • Massa, P. T., Szuchet, S. & Mugnaini, E. (1984) Cell–cell interactions of isolated and cultured oligodendrocytes: Formation of linear occluding junctions of isolated and expression of peculiar intramembrane particles. Journal of Neuroscience 4, 3128–39.

    Google Scholar 

  • Mori, S. & Leblond, C. P. (1970) Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats. Journal of Comparative Neurology 139, 1–30.

    Google Scholar 

  • Nadon, N. L., Crotzer, D. R. & Stewart, J. R. (1995) Embryonic development of central nervous system myelination in a reptilian species, Eumeces fasciatus. Journal of Comparative Neurology 362, 433–40.

    Google Scholar 

  • Nott, R. M., Fernando, R., Stuart, S. J., Bernard, C. C. A. & Kerlero de Rosbo, N. (1991) Myelin basic protein in marsupials. Journal of Neuroimmunology 34 (Suppl. 1), 97.

    Google Scholar 

  • Oswaldo-Cruz, E. & Rocha-Miranda, C. E. (1967a) The diencephalon of the opossum in stereotaxic coordinates. I. The epithalamus and dorsal thalamus. Journal of Comparative Neurology 129, 1–37.

    Google Scholar 

  • Oswaldo-Cruz, E. & Rocha-Miranda, C. E. (1967b) The diencephalon of the opossum in stereotaxic coordinates. II. The ventral thalamus and hypothalamus. Journal of Comparative Neurology 129, 39–48.

    Google Scholar 

  • Oswaldo-Cruz, E. & Rocha-Miranda, C. E. (1968) The Brain of the Opossum (Didelphis marsupialis). Rio de Janeiro: Instituto de Biofisica, Universidade Federal do Rio de Janeiro.

    Google Scholar 

  • Puelles, L. (1995) A segmental morphological paradigm for understanding vertebrate forebrains. Brain, Behavior and Evolution 46, 319–37.

    Google Scholar 

  • Remahl, S. & Hildebrand, C. (1990) Relations between axons and oligodendroglial cells during initial myelination. I. The glial unit. Journal of Neurocytology 19, 313–28.

    Google Scholar 

  • Reynolds, H. C. (1952) Studies of reproduction in the opossum. Univeersity of California Publications of Zoology 52, 233–84.

    Google Scholar 

  • Reynolds, R. & Wilkin, G. P. (1988) Development of macroglial cells in rat cerebellum. II. An in situ immunohistochemical study of oligodendroglial precursors to mature myelinating cell. Development 102, 409–25.

    Google Scholar 

  • Reynolds, R. & Wilkin, G. P. (1991) Oligodendroglial progenitor cells but not oligodendroglia divide during normal development of the rat cerebellum. Journal of Neurocytology 20, 216–24.

    Google Scholar 

  • Reynolds, R., Carey, E. M. & Herschkowitz, N. (1989) Immunohistochemical identification of myelin basic protein and 2′,3′-cyclic nucleotide 3′-phosphohydrolase in flattened membrane expansions produced by cultured oligodendrocytes. Neuroscience 28, 181–8.

    Google Scholar 

  • Scherer, S. S., Braun, P. E., Grinspan, J., Collarini, E., Wang, D.-Y. & Kamholz, J. (1994) Differential regulation of the 2′,3′-cyclic nucleotide 3′-phosphodiesterase gene during oligodendrocyte development. Neuron 12, 1363–75.

    Google Scholar 

  • Skoff, R. P. & Knapp, P. E. (1991) Division of astroblasts and oligodendroblasts in postnatal rodent brain: Evidence for separate astrocyte and oligodendrocyte lineages. Glia 4, 165–74.

    Google Scholar 

  • Skoff, R. P., Ghandour, M. S. & Knapp, P. E. (1994) Postmitotic oligodendrocytes generated during postnatal cerebral development are derived from proliferation of immature oligodendrocytes. Glia 12, 12–24.

    Google Scholar 

  • Szuchet, S. (1995) The morphology and ultrastructure of oligodendrocytes and their functional implications. In Neuroglia (edited by Kettenmann, H. & Ransom, B. R.), pp. 23–43. New York: Oxford University Press.

    Google Scholar 

  • Tsukada, Y. & Kurihara, T. (1992) 2′,3′-cyclic nucleotide 3′-phosphodiesterase: Molecular characterization and possible functional significance. In Myelin: Biology and Chemistry (edited by Martenson, R. E.), pp. 449–480. Boca Raton, FL: CRC Press.

  • Weruaga-Prieto, E., Eggli, P. & Celio, M. R. (1996) Rat brain oligodendrocytes do not interact selectively with axons expressing different calcium-binding protein. Glia 16, 117–28.

    Google Scholar 

  • Wood, P. & Bunge, R. (1991) The origin of remyelinating cells in the adult central nervous system: the role of the mature oligodendrocyte. Glia 4, 225–32.

    Google Scholar 

  • Yim, S. H., Szuchet, S. & Polak, P. E. (1986) Cultured oligodendrocytes. A role for cell-substrate interactions in phenotypic expression. Journal of Biological Chemistry 261, 11808–15.

    Google Scholar 

  • Yu, W.-P., Collarini, E. J., Pringle, N. P. & Richardson, W. D. (1994) Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron 12, 1353–62.

    Google Scholar 

  • Zou, X. C. & Martin, G. F. (1995) The distribution of GAP-43 immunoreactivity in the central nervous system of the adult opossum (Didelphis virginiana) with notes on its development. Brain, Behavior and Evolution 45, 63–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barradas, P.C., Gomes, S.S. & Cavalcante, L.A. Heterogeneous patterns of oligodendroglial differentiation in the forebrain of the opossum: Didelphis marsupialis. J Neurocytol 27, 15–25 (1998). https://doi.org/10.1023/A:1006930818708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006930818708

Keywords

Navigation