Photosynthetica 1998, 35(2):213-222 | DOI: 10.1023/A:1006906722469

Aluminium Toxicity Modulates Nitrate to Ammonia Reduction

F.C. Lidon1, J.C. Ramalho2, M.G. Barreiro2
1 Plant Biology Unit, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, Portugal
2 Instituto de Investigaçäo Científica Tropical-CEPTA, Lisboa Codex, Portugal

Two weeks-old maize (Zea mays cv. XL-72.3) plants were exposed to Al concentrations 0 (Al0), 9 (Al9), 27 (Al27) or 81 (Al81) g m-3 for 20 d in a growth medium with low ionic strength. Thereafter, the Al concentration-dependent interactions on root nitrate uptake, and its subsequent reduction to ammonia in the leaves were investigated. Al concentrations in the roots sharply increased with increasing Al concentrations while root elongation correspondingly decreased. Root fresh and dry masses, acidification capacity, and nitrate and nitrogen contents decreased from Al27 onwards, whereas leaf nitrogen, nitrate, nitrite, and ammonia concentrations decreased starting with Al9. Electrolytic conductance increased by 60 % in root tissues from Al0 to Al81 but it did not increase significantly in the leaves. In Al9, Al27, and Al81 plants a decrease in shoot fresh and dry masses was observed. Al concentrations between 0 and 27 g m-3 increased net photosynthetic rate, stomatal conductance, and the quantum yield of photosynthetic electron transport, whereas the intercellular CO2 concentration was minimum in Al27 plants. In the leaves, nitrate reductase (E.C. 1.6.6.1) activity increased until Al27, and nitrite reductase (E.C. 1.6.6.4) activity until Al81. Hence there may be an Al mediated extracellular and intracellular regulation of root net nitrate uptake. Nitrate accumulation in the roots affects the translocation rates and, therefore, the nitrate concentration in the leaves. The in vivo reducing power generated by the photosynthetic electron flow does not limit nitrate to ammonia reduction, and the increase of maximum nitrate and nitrite reductase activities parallels the decreasing nitrate, nitrite, and ammonia concentrations.

Prepublished online: June 1, 1998; Published: January 1, 1998  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Lidon, F.C., Ramalho, J.C., & Barreiro, M.G. (1998). Aluminium Toxicity Modulates Nitrate to Ammonia Reduction. Photosynthetica35(2), 213-222. doi: 10.1023/A:1006906722469
Download citation

References

  1. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1-15, 1949. Go to original source...
  2. Brunswick, P., Cresswell, C.F.: Nitrite uptake into intact pea chloroplasts. I. Kinetics and relationship with nitrite assimilation.-Plant Physiol. 86: 378-383, 1988. Go to original source...
  3. Cakmak, I., Horst, W.J.: Effect of aluminum on net efflux of nitrate and potassium from root tips of soybean (Glycine max L.).-J. Plant Physiol. 138: 400-403, 1991. Go to original source...
  4. Chapman, H.D., Pratt, P.F.: Methods of Analysis for Soils, Plants and Waters.-University of California Division of Agricultural Sciences 1961.
  5. Coutinho, J.F.: Acidez do solo e toxieidade do alumínio. [Soil Acids and Aluminium Toxicity.]-Ph.D. Thesis. Universidade de Trás-os-Montes e Alto Douro 1989. [In Portug.]
  6. Delhaize, E., Ryan, P.R.: Aluminum toxicity and tolerance in plants.-Plant Physiol. 107: 315-321, 1995. Go to original source...
  7. Dinev, N., Stancheva, I.: Changes in nitrate reductase activity, plastid pigment content, and plant mineral composition of wheat, rye and triticale grown in the presence of aluminum.-J. Plant Nutr. 16: 2397-2409, 1993. Go to original source...
  8. Durieux, R.P., Jackson, W.A., Kamprath, E.J., Moll, R.H.: Inhibition of nitrate uptake by aluminum in maize.-Plant Soil 151: 97-104, 1993. Go to original source...
  9. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989. Go to original source...
  10. Kamada, H., Harada, H.: Studies on nitrogen metabolism during somatic embryogenesis in carrot. II. Changes in nitrate reductase activity.-Biochem. Physiol. Pflanz. 179: 403-410, 1984. Go to original source...
  11. Keltjens, W.G.: Short-term effects of Al on nutrient uptake, H+ efflux, root respiration and nitrate reductase activity of two sorghum genotypes differing in Al-susceptibility.-Commun. Soil Sci. Plant Anal. 19: 1155-1163, 1988. Go to original source...
  12. Keltjens, W.G., van Ulden, P.S.R.: Effects of Al on nitrogen (NH4+ and NO3) uptake, nitrate reductase activity and proton release in two sorghum cultivars differing in Al tolerance.-Plant Soil 104: 227-234, 1987. Go to original source...
  13. Ketchie, D.O.: Methods of determing cold hardiness and cold injury in citrus.-Proc. First Int. Citrus Symp. 2: 559-563, 1969.
  14. Kinraide, T.B.: Aluminum enhancement of plant growth in acid rooting media. A case of reciprocal alleviation of toxicity by two toxic cations.-Physiol. Plant. 88: 619-625, 1993. Go to original source...
  15. Klotz, F., Horst, W.J.: Genotypic differences in aluminum tolerance of soybean (Glycine max L.) as affected by ammonium and nitrate-nitrogen nutrition.-J. Plant Physiol. 132: 702-707, 1988. Go to original source...
  16. Lazof, D.B., Goldsmith, J.G., Rufty, T.W., Linton, R.W.: Rapid uptake of aluminum into cells of intact soybean root tip: A microanalytical study using secondary ion mass spectrometry.-Plant Physiol. 106: 1107-1114, 1994. Go to original source...
  17. Lorenc-Pluciñska, G., Ziegler, H.: Changes in ATP levels in Scots pine needles during aluminium stress.-Photosynthetica 32: 141-144, 1996.
  18. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent.-J. biol. Chem. 193: 265-275, 1951. Go to original source...
  19. Nichol, B.E., Oliveira, L.A., Glass, A.D.M., Siddiqi, M.Y.: The effects of aluminum on the influx of calcium, potassium, ammonium, nitrate, and phosphate in an aluminum-sensitive cultivar of barley (Hordeum vulgare L.).-Plant Physiol. 101: 1263-1266, 1993. Go to original source...
  20. NP-1996. Cereais e leguminosas. Determinaçäo da teoi de proteína bruto. [Cereals and Leguminoses. Determination of Gross Amount of Proteins.]-Direcçäo Geral de Qualidade, Lisboa 1982. [In Portug.]
  21. Pavan, M.A., Bingham, F.T.: Toxicity of aluminum to coffee seedlings grown in nutrient solution.-Soil Sci. Soc. Amer. J. 46: 993-997, 1982. Go to original source...
  22. Rengel, Z.: Role of calcium in aluminum toxicity.-New Phytol. 121: 499-513, 1992. Go to original source...
  23. Rufty, W., MacKown, C.T., Lazof, D.B., Carter, T.E.: Effects of aluminium on nitrate uptake and assimilation.-Plant Cell Environ. 18: 1325-1331, 1995. Go to original source...
  24. Sanchez, J., Heldt, H. W.: On the regulation of spinach nitrate reductase.-Plant Physiol. 92: 684-689, 1990. Go to original source...
  25. Simon, L., Kieger, M., Sung, S.S., Smalley, T.J.: Aluminium toxicity in tomato. Part 2. Leaf gas exchange, chlorophyll content, and invertase activity.-J. Plant Nutr. 17: 307-317, 1994. Go to original source...
  26. Singh, J.P.: A rapid method for determination of nitrate in soil and plant extracts.-Plant Soil 110: 137-139, 1988. Go to original source...
  27. Solorzano, L.: Determination of ammonium in natural waters by the phenolhypochloride method.-Limnol. Oceanogr. 14: 799-801, 1969. Go to original source...
  28. Taylor, G.J.: The physiology of aluminum phytotoxicity.-In: Sigel, H., Sigel, A. (ed.): Metal Ions in Biological Systems 24. Aluminum and its Role in Biology. Pp. 123-163. Marcel Dekker, New York 1991.
  29. van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.-Photosynth. Res. 25: 147-150, 1990. Go to original source...
  30. Wakasa, K., Kobayashi, M., Kamada, H.: Colony formation from protoplast of nitrate reductase-deficient rice cell lines.-J. Plant Physiol. 117: 223-231, 1984. Go to original source...
  31. Zocchi, G., Cocucci, S.: Fe uptake mechanism in Fe-efficient cucumber roots.-Plant Physiol. 92: 908-911, 1990. Go to original source...