Skip to main content
Log in

Nonaqueous Phase Liquid Dissolution in Porous Media: Current State of Knowledge and Research Needs

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Our understanding of nonaqueous phase liquid (NAPL) dissolution in the subsurface environment has been increasing rapidly over the past decade. This knowledge has provided the basis for recent developments in the area of NAPL recovery, including cosolvent and surfactant flushing. Despite these advances toward feasible remediation technologies, there remain a number of unresolved issues to motivate environmental researchers in this area. For example, the lack of an effective NAPL‐location methodology precludes effective deployment of NAPL recovery technologies. The objectives of this paper are to critically review the state of knowledge in the area of stationary NAPL dissolution in porous media and to identify specific research needs. The review first compares NAPL dissolution‐based mass transfer correlations reported for environmental systems with more fundamental results from the literature involving model systems. This comparison suggests that our current understanding of NAPL dissolution in small‐scale (on the order of cm) systems is reasonably consistent with fundamental mass transfer theory. The discussion then expands to encompass several issues currently under investigation in NAPL dissolution research, including: characterizing NAPL morphology (i.e. effective size and surface area); multicomponent mixtures; scale-related issues (dispersion, flow by-passing); locating NAPL in the subsurface and enhanced NAPL recovery. Research needs and potential approaches are discussed throughout the paper. This review supports the following conclusions: (1) Our knowledge related to local dissolution and remediation issues is maturing, but should be brought to closure with respect to the link between NAPL emplacement theory (as it impacts NAPL morphology) and NAPL dissolution; (2) The role of nonideal NAPL mixtures, and intra-NAPL mass transfer processes must be clarified; (3) Valid models for quantifying and designing NAPL recovery schemes with chemical additives need to be refined with respect to chemical equilibria, mass transfer and chemical delivery issues; (4) Computational and large-scale experimental studies should begin to address parameter up-scaling issues in support of model application at the field scale; and (5) Inverse modeling efforts aimed at exploiting the previous developments should be expanded to support field-scale characterization of NAPL location and strength as a dissolving source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abriola, L. M., Dekker, T. J. and Pennell, K. D.: 1993, Surfactant-enhanced solubilization of residual dodecane in soil columns. 2. Mathematical modeling, Environ. Sci. Technol. 27(12), 2341–2351.

    Google Scholar 

  • Anderson, M. R., Johnson, R. L. and Pankow, J. F.: 1992a, Dissolution of dense chlorinated solvents into ground-water. 1. Dissolution from a well-defined residual source, Ground Water 30(2), 250–256.

    Google Scholar 

  • Anderson, M. R., Johnson, R. L. and Pankow, J. F.: 1992b, Dissolution of dense chlorinated solvents into groundwater. 3. Modeling contaminant plumes from fingers and pools of solvent, Environ. Sci. Technol. 26(5), 901–908.

    Google Scholar 

  • Anonymous:1997, Surfactants cost-effectively increase efficiency of DNAPL pump-and-treat systems, Hazardous Waste Consultant 15(1), A16–A20.

  • Augustijn, D. C. M. and Rao, P. S. C.: 1995, Enhanced removal of organic contaminants by solvent flushing, ACS Symp. Series 607, 224–236.

    Google Scholar 

  • Baldwin, C. A. and Gladden, L. F.: 1996, NMR imaging of nonaqueous-phase liquid dissolution in a porous medium, AIChE 42(5), 1341–1349.

    Google Scholar 

  • Batchelor, G. K.: 1979, Mass transfer from a particle suspended in fluid with a steady linear ambient velocity distribution, J. Fluid Mech. 95(2), 369–400.

    Google Scholar 

  • Bird, R. B., Stewart, W. E. and Lightfoot, E. N.: 1960, Transport Phenomena, Wiley, New York, N.Y.

    Google Scholar 

  • Borden, R. C. and Kao, C. M.: 1992, Evaluation of groundwater extraction for remediation of petroleum-contaminated aquifers, Water Environ. Res. 64(1), 28–36.

    Google Scholar 

  • Borden, R. C. and Piwoni, M. D.: 1992, Hydrocarbon dissolution and transport-A comparison of equilibrium and kinetic models, J. Contam. Hydrol. 10(4), 309–323.

    Google Scholar 

  • Bowman, C. W., Ward, D. M. Johnson, A. I. and Trass, O.: 1961, Mass transfer from fluid and solid spheres at low Reynolds numbers, Can. J. Chem. Engng 39(1), 9–13.

    Google Scholar 

  • Brandes, D. and Farley, K. J.: 1993, Importance of phase behavior on the removal of residual DNAPLs from porous media by alcohol flushing, Water Environ. Res. 65(7), 869–878.

    Google Scholar 

  • Butcher, J. B. and Gauthier, T. D.: 1994, Estimation of residual dense NAPL mass by inverse modeling, Ground Water 32(1), 71–78.

    Google Scholar 

  • Chatzis, I., Morrow, N. R. and Lim, H. T.: 1983, Magnitude and detailed structure of residual oil saturation, Soc. Pet. Engng J. 24, 311–326.

    Google Scholar 

  • Chrysikopoulos, C. V., Voudrias, E. A. and Fyrillas, M. M.: 1994, Modeling of contaminant transport resulting from dissolution of nonaqueous phase liquid pools in saturated porous media, Transport in Porous Media 16(2), 125–145.

    Google Scholar 

  • Chrysikopoulos, C. V.: 1995, Three-dimensional analytical models of contaminant transport from Nonaqueous Phase Liquid Pool Dissolution in saturated subsurface formations, Water Resour. Res. 31(4), 1137–1145.

    Google Scholar 

  • Chrysikopoulos, C. V. and Lee, K. Y.: 1998, Contaminant tansport resulting from multicomponent nonaqueous phase liquid pool dissolution in three-dimensional subsurface formations, J. Contam. Hydrol. 31(1-2), 1–21.

    Google Scholar 

  • Clift, R., Grace, J. R. and Weber, M. E.: 1978, Bubbles, Drops, and Particles, Academic Press, New York.

    Google Scholar 

  • Conrad, S. H., Wilson, J. L. Mason, W. R. and Peplinski, W. J.: 1992, Visualization of residual organic liquid trapped in aquifers, Water Resour. Res. 28(2), 467–478.

    Google Scholar 

  • Csanady, G. T.: 1986, Mass transfer to and from small particles in the sea, Limnol. Oceanogr. 31(2), 237–248.

    Google Scholar 

  • Cussler, E. L.: 1997, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge.

    Google Scholar 

  • Dela Barre, B. K., Harmon, T. C. and Chrysikopoulos, C. V.: 1998, Dissolution of DNAPL pools of nonideal geometry in a homogeneous porous medium, AGU Abstract, AGU Fall Meeting, San Francisco, December 6-10.

  • deZabala, E. F. and Radke, C. J.: 1986, A nonequilibrium description of alkaline waterflooding, SPE Reservoir Engng 1(1), 27–43.

    Google Scholar 

  • Dobry, R. and Finn, R. K.: 1956, Mass transfer to a cylinder at low reynolds numbers, Ind. Engng Chem. 48(9), 1543.

    Google Scholar 

  • Domenico, P. A. and Schwartz, F.W.: 1990, Physical and Chemical Hydrogeology, Wiley, New York, N.Y.

    Google Scholar 

  • Dwarakanath, V. and Pope, G. A.: 1998, New approach for estimating alcohol partition coefficients between nonaqueous phase liquids and water, Environ. Sci. Technol. 32(11), 1662–1666.

    Google Scholar 

  • Dwivedi, P. N. and Updhyay, S. N.: 1977, Particle-fluid mass transfer in fixed and fluidized beds, Ind. Engng Chem. Process Design Dev. 16(2), 157–165.

    Google Scholar 

  • Edwards, D. A., Liu, Z. B. and Luthy, R. G.: 1994, Surfactant solubilization of organic compounds in soil/aqueous systems, Ind. Engng Chem. Process Design Dev. 120(1), 5–22.

    Google Scholar 

  • Edwards, D. A., Luthy, R. G. and Liu, Z. B.: 1991, Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions, J. Environ. Engng-ASCE 25(1), 127–133.

    Google Scholar 

  • Fenwick, D. H. and Blunt, M. J.: 1998, Three-dimensional modeling of three phase imbibition and drainage, Adv. Water Resour. 21(2), 121–143.

    Google Scholar 

  • Fortin, J., Jury, W. A. and Anderson, M. A.: 1997, Enhanced removal of trapped nonaqueous phase liquids from saturated soil using surfactant solutions, J. Contam. Hydrol. 24(3-4), 247–267.

    Google Scholar 

  • Fried, J. J., Muntzer, P. and Zillox, L.: 1979, Ground-water pollution by transfer of oil hydrocarbons, Ground Water 17, 586–594.

    Google Scholar 

  • Friedlander, S. K.: 1957, Mass and heat transfer to single spheres and cylinders at low Reynolds numbers, AIChE 3(1), 43–48.

    Google Scholar 

  • Geankoplis, C. J.: 1972, Mass Transport Phenomena, Holt Rinehart & Winston, Inc., New York.

    Google Scholar 

  • Geller, J. T. and Hunt, J. R.: 1993, Mass transfer from nonaqeuous phase organic liquids in watersaturated porous media, Water Resour. Res. 29(4), 833–845.

    Google Scholar 

  • Gorelick, S.M.: 1982, A model for managing sources of groundwater pollution, Water Resour. Res. 18(4), 773–781.

    Google Scholar 

  • Gorelick, S. M. and Remson, I.: 1982, Optimal dynamic management of groundwater pollutant sources, Water Resour. Res. 18(1), 71–76.

    Google Scholar 

  • Griffith, R. M.: 1960, Mass transfer from drops and bubbles, Chem. Engng Sci. 12, 198–213.

    Google Scholar 

  • Grimberg, S. J., Aitken, M. D. and Stringfellow, W. T.: 1994, The influence of a surfactant on the rate of phenanthrene mass transfer into water, Water Sci. Technol. 30(7), 23–30.

    Google Scholar 

  • Grimberg, S. J., Nagel, J. and Aitken, M. D.: 1995, Kinetics of phenanthrene dissolution into water in the presence of nonionic surfactants, Environ. Sci. Technol. 29(6), 1480–1487.

    Google Scholar 

  • Grimberg, S. J., Miller, C. T. and Aitken, M. D.: 1996, Surfactant-enhanced dissolution of phenanthrene into water for laminar flow conditions, Environ. Sci. Technol. 30(10), 2967–2974.

    Google Scholar 

  • Harmon, T. C., Kim, T-J., Dela Barre, B. K. and Chrysikopoulos, C. V.: 1998, Modeling cosolvent-water displacement in a saturated porous media, in press, J. Environ. Engng-ASCE.

  • Hayden, N. J. and van der Hoven, E. J.: 1996, Alcohol flushing for enhanced removal of coal tar from contaminated soils, Water Environ. Res. 68(7), 1165–1171.

    Google Scholar 

  • Holman, H. Y. N. and Javandel, I.: 1996, Evaluation of transient dissolution of slightly water-soluble compounds from a light nonaqueous phase liquid pool, Water Resour. Res. 32(4), 915–923.

    Google Scholar 

  • Holsen, T. M., Taylor, E. R., Seo, Y. C. and Anderson, P. R.: 1991, Removal of sparingly soluble organic chemicals from aqueous solutions with surfactant-coated ferrihydrite, Environ. Sci. Technol. 25(9), 1585–1589.

    Google Scholar 

  • Hunt, J. R., Sitar, N. and Udell, K. S.: 1988a, Nonaqueous phase liquid transport and cleanup 1. Analysis of mechanisms, Water Resour. Res. 24(8), 1247–1258.

    Google Scholar 

  • Hunt, J. R., Sitar, N. and Udell, K. S.: 1988b, Nonaqueous phase liquid transport and cleanup 2. Experimental studies, Water Resour. Res. 24(8), 1259–1269.

    Google Scholar 

  • Illangasekare, T. H. and Saba, T.: 1998, Up-scaling of mass transfer from zones with entrapped nonaqueous phase chemicals, AGU Abstract, AGU Fall Meeting, San Francisco, December 6-10.

  • Imhoff, P. T., Jaffe, P. R. and Pinder, G. F.: 1993, An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous Media, Water Resour. Res. 30(2), 307–320.

    Google Scholar 

  • Imhoff, P. T., Gleyzer, S. N., McBride, J. F., Vancho, L. A., Okuda, I. and Miller, C. T.: 1995, Cosolvent enhanced remediation of residual reuse nonaqueous phase liquids-Experimental investigation, Environ. Sci. Technol. 29(8), 1966–1976.

    Google Scholar 

  • Imhoff, P. T., Frizzell, A. and Miller, C. T.: 1997, Evaluation of thermal effects on the dissolution of a nonaqueous phase liquid in porous-media, Environ. Sci. Technol. 31(6), 1615–1622.

    Google Scholar 

  • James, A. I., Graham, W. D. Hatfield, K. Rao, P. S. C. and Annable, M. D.: 1997, Optimal estimation of residual nonaqueous phase liquid saturations using partitioning tracer concentration data, Water Resour. Res. 33(12), 2621–2636.

    Google Scholar 

  • Jia, C., Shing, K. and Yortsos, Y. C.: 1998, Visualization and simulation of NAPL solubilization in pore networks, J. Contam. Hydrol., in press.

  • Jin, M. Q., Delshad, M., Dwarakanath, V., McKinney, D. C., Pope, G. A., Sepehrnoori, K., Tilburg, C. E. and Jackson, R. E.: 1995, Partitioning tracer test for detection, estimation, and remediation performance assessment of subsurface nonaqueous phase liquids, Water Resour. Res. 31(5), 1201–1211.

    Google Scholar 

  • Johnson, R. L. and Pankow, J. F.: 1992, Dissolution of dense chlorinated solvents into groundwater. 2. Source functions for pools of solvent, Environ. Sci. Technol. 26(5), 896–901.

    Google Scholar 

  • Kanga, S. A., Bonner, J. S., Page, C. A., Mllls, M. A. and Autenrieth, R. L.: 1997, Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants, Environ. Sci. Technol. 31(2), 556–561.

    Google Scholar 

  • Keely, J. F.: 1989, Performance evaluation of pump-and-treat remediations, U.S. Environmental Protection Agency Report EPA/540/4–89/005, Washington, D.C.

  • Kennedy, C. A. and Lennox, W. C.: 1997, A pore-scale investigation of mass transport from dissolving DNAPL droplets, J. Contam. Hydrol. 24(3-4), 221–246.

    Google Scholar 

  • Kim, T-J. and Chrysikopoulos, C. V.: 1998, Mass transfer correlations for nonaqueous phase liquid pool dissolution in saturated porous media, Water Resour. Res. 35(2), 449–460.

    Google Scholar 

  • Kueper, B. H. and Frind, E. O.: 1991, 2-Phase flow in heterogeneous porous media. 1. Model development, Water Resour. Res. 27(6), 1049–1057.

    Google Scholar 

  • Kueper, B. H. and Frind, E. O.: 1991, 2-Phase flow in heterogeneous porous media. 2. Model application, Water Resour. Res. 27(6), 1059–1070.

    Google Scholar 

  • Kusik, C. L. and Happel, J.: 1962, Boundary layer mass transport with heterogeneous catalysis, Ind. Engng Chem. Fundamentals 1(3), 163–172.

    Google Scholar 

  • Lee, K. Y., Chrysikopoulos, C. V. and Harmon, T. C.: 1998, An experimental study of contaminant transport from dissolution of a well-defined trichloroethylene pool in saturated porous media, AGU Abstract, AGU Fall Meeting, San Francisco, December 6-10.

  • Lesage, S. and Brown, S.: 1994, Observation of the dissolution of NAPL mixtures, J. Contam. Hydrol. 15(1-2), 57–71.

    Google Scholar 

  • Levich, V.: 1962, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Lin, C. C., Segel, L. A. and Handelman, G. H.: 1974, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan, New York

    Google Scholar 

  • Liu, Z. B., Laha, S. L. and Luthy, R. G.: 1991, Surfactant solubilization of polycyclic aromatic hydrocarbon compounds in soil water suspensions, Water Sci. Technol. 23(1-3), 475–485.

    Google Scholar 

  • Lingineni, S. and Dhir, V. K.: 1997, Controlling transport processes during NAPL removal by soil venting, Adv. Water Resour. 20(2-3), 157–169.

    Google Scholar 

  • Longino, B. L. and Kueper, B. H.: 1995, The use of upward gradients to arrest downward dense, nonaqueous phase liquid (DNAPL) migration in the presence of solubilizing surfactants, Can. Geotech. J. 32(2), 296–308.

    Google Scholar 

  • Luthy, R. G., Ramaswami, A., Ghoshal, S. and Merkel, W.: 1993, Interfacial films in coal tar nonaqueous-phase liquid water systems, Environ. Sci. Technol. 27(13), 2914–2918.

    Google Scholar 

  • Mackay, D., Shiu, W. Y., Maijanen, A. and Feenstra, S.: 1991, Dissolution of nonaqueous phase liquids in Groundwater, J. Contam. Hydrol. 8(1), 23–42.

    Google Scholar 

  • Mackay, D. M., Roberts, P. V. and Cherry, J. A.: 1985, Transport of organic contaminants in groundwater, Environ. Sci. Technol. 19(5), 384–392.

    Google Scholar 

  • Martel, R. and Gelinas, P. J.: 1996, Surfactant solutions developed for NAPL recovery in contaminated aquifers, Ground Water 34(1), 143–154.

    Google Scholar 

  • Martin, H.: 1978, Low Peclet number particle-to-fluid heat and mass transfer in packed beds, Chem. Engng Sci. 33, 913–919.

    Google Scholar 

  • Mason, A. R. and Kueper, B. H.: 1996, Numerical simulation of surfactant-enhanced solubilization of pooled DNAPL, Environ. Sci. Technol. 30(11), 3205–3215.

    Google Scholar 

  • Mayer, A. S. and Miller, C. T.: 1992, The influence of porous-medium characteristics and measurement scale on pore-scale distributions of residual nonaqueous-phase liquids, J. Contam. Hydrol. 11(3-4), 189–213.

    Google Scholar 

  • Mayer, A. S. and Miller, C. T.: 1993, An experimental investigation of pore-scale distributions of nonaqueous phase liquids at residual saturation, Transport in Porous Media 10(1), 57–80.

    Google Scholar 

  • Mayer, A. S. and Miller, C. T.: 1996, The influence of mass transfer characteristics and porous media heterogeneity on nonaqueous phase dissolution, Water Resour. Res. 32(6), 1551–1567.

    Google Scholar 

  • Mercer, J. W. and Cohen, R. M.: 1990, A review of immiscible fluids in the subsurface: properties, models, characterization and remediation, J. Contam. Hydrol. 6, 107–163.

    Google Scholar 

  • Miller, C. T., Poirier-McNeill, M. M. and Mayer, A. S.: 1990, Dissolution of trapped nonaqueous phase liquids-mass transfer characteristics, Water Resour. Res. 26(11), 2783–2796.

    Google Scholar 

  • Miller, C. T., Christakos, G., Imhoff, P. T., McBride, J. F., Pedit, J. A. and Trangenstein, J. A.: 1998, Multiphase flow and transport modeling in heterogeneous porous media: challenges and approaches, Adv. Water Resour. 21(2), 77–120.

    Google Scholar 

  • Mukherji, S., Peters, C. A. and Weber, W. J.: 1997, Mass transfer of polynuclear aromatic hydrocarbons from complex DNAPL mixtures, Environ. Sci. Technol. 31(2), 416–423.

    Google Scholar 

  • Nelson, P. A. and Galloway, T. R.: 1975, Particle-to-fluid heat and mass transfer in dense systems of fine particles, Chem. Engng Sci. 30, 1–6.

    Google Scholar 

  • Ng, K. M., Davis, H. T. and Scriven, L. E.: 1978, Visualization of blob Mechanics in flow through porous media, Chem. Engng Sci. 33, 1009–1017.

    Google Scholar 

  • Nkedi-Kizza, P., Rao, P. S. C. and Hornsby, A. G.: 1985, Influence of organic cosolvents on sorption of hydrophobic organic chemicals by soils, Environ. Sci. Technol. 19, 975–979.

    Google Scholar 

  • Okuda, I., McBride, J. F., Gleyzer, S. N. and Miller, C. T.: 1996, Physicochemical transport processes affecting the removal of residual DNAPL by nonionic surfactant solutions, Environ. Sci. Technol. 30(6), 1852–1860.

    Google Scholar 

  • Pennell, K. D., Abriola, L.M. and Weber J.: 1993, Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. Experimental investigation, Environ. Sci. Technol. 27(12), 2332–2340.

    Google Scholar 

  • Pennell, K. D., Jin, M. Q., Abriola, L. M. and Pope, G. A.: 1994, Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene, J. Contam. Hydrol. 16(1), 35–53.

    Google Scholar 

  • Pfannkuch, H-O.: 1984, Determination of the contaminant source strength from mass exchange processes at the petroleum-ground-water interface in shallow aquifer systems. Proc. NWWA Conf. Petroleum Hydrocarbons and Organic Chemicals in Ground Water, National Well Water Association, Dublin, Ohio.

    Google Scholar 

  • Pfeffer, R.: 1964, Heat and mass transport in multiparticle systems, Ind. Engng Chem. Fundamentals 3(4), 380–383.

    Google Scholar 

  • Pfeffer, R. and Happel, J.: 1964, An analytical study of heat and mass transfer in multiparticle systems at low Reynolds numbers, AIChE 10(5), 605–611.

    Google Scholar 

  • Powers, S. E., Loureiro, C. O., Abriola, L. M. and Weber, W. J.: 1991, Theoretical study of the significance of nonequilibrium dissolution of nonaqueous phase liquid in subsurface systems, Water Resour. Res. 27(4), 463–477.

    Google Scholar 

  • Powers, S. E., Abriola, L. M. and Weber, W. J.: 1992, An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems-steady state mass transfer rates, Water Resour. Res. 28(10), 2691–2705.

    Google Scholar 

  • Powers, S. E., Abriola, L. M. and Weber, W. J.: 1994a, An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems-transient mass transfer rates, Water Resour. Res. 30(2), 321–332.

    Google Scholar 

  • Powers, S. E., Abriola, L. M., Dunkin, J. S. and Weber, W. J.: 1994b, Phenomenological models for transient NAPL-water mass-transfer processes, J. Contam. Hydrol. 16(1), 1–33.

    Google Scholar 

  • Quintana, G. C.: 1990, The effect of surface blocking on mass transfer from a stagnant cap drop, Int. J. Heat Mass Transfer 33(12), 2631–2640.

    Google Scholar 

  • Ramaswami, A., Ghoshal, S. and Luthy, R. G.: 1994, Mass transfer and biodegradation of PAH compounds from coal tar, Water Sci. Technol. 30(7), 61–70.

    Google Scholar 

  • Ranz, W. E. and J. Marshall, W. R.: 1952, Evaporation from drops, Chem. Engng Progr. 48 (3-4), 141–146.

    Google Scholar 

  • Rao, P. S. C., Annable, M. D., Sillan, R. K. Dai, D., Hatfield, K., Graham, W. D., Wood, A. L. and Enfield, C. G.: 1997, Field-scale evaluation of in situ cosolvent flushing for enhanced aquifer remediation, Water Resour. Res. 33(12), 2673–2686.

    Google Scholar 

  • Rexwinkel, G., Heesink, A. B. M. and Van Swaaij, W. P. M.: 1997, Mass transfer in packed beds at low peclet numbers-wrong-experiments or wrong interpretations, Chem. Engng Sci. 52(21/22), 3995–4003.

    Google Scholar 

  • Rothmel, R. K., Peters, R. W., Martin, E. St. and Deflaun, M. F.: 1998, Surfactant foam/bioaugmentation technology for in situ treatment of TCE-DNAPLs, Environ. Sci. Technol. 32(11), 1667–1675.

    Google Scholar 

  • Schwille, F.: 1988, Dense Chlorinated Solvents in Porous and Fractured Media, Lewis Publishers, Chelsea, Michigan.

    Google Scholar 

  • Semprini, L., Hopkins, O. S. and Tasker, B. R.: Laboratory, field and modeling studies of Radon. 222 as a natural tracer for monitoring NAPL contamination, Transport in Porous Media 38, 223–240 (this issue).

  • Sherwood, T. K., Pigford, R. L. and Wilke, C. R.: 1975, Mass Transfer, McGraw-Hill, Inc., New York.

    Google Scholar 

  • Sidauruk, P., Cheng, A. H-D. and Ouazar, D.: 1998, Groundwater contaminant source and transport parameter identification by correlation coefficient optimization, Ground Water 36(2), 208–214.

    Google Scholar 

  • Skaggs, T. H. and Kabala, Z. J.: 1994, Recovering the release history of a groundwater contamiant, Water Resour. Res., 30(1), 71–79.

    Google Scholar 

  • Skaggs, T. H. and Kabala, Z. J.: 1995, Recovering the history of a groundwater contamiant plume-method of quasi-reversibility, Water Resour. Res., 31(11), 2669–2673.

    Google Scholar 

  • Snodgrass, M. F. and Kitanidis, P. K.: 1997, A geostatistical approach to contaminant source identification, Water Resour. Res., 33(4), 537–546.

    Google Scholar 

  • Soerens, T. S., Sabatini, D. A. and Harwell, J. H.: 1998, Effects of flow bypassing and nonuniform NAPL distribution on the mass transfer characteristics of NAPL dissolution, Water Resour. Res. 34(7), 1657–1673.

    Google Scholar 

  • Sorensen, J. P. and Stewart, W. E.: 1974a, Computation of forced convection in slow flow through ducts and packed beds-III. Heat and mass transfer in a simple cubic array of spheres, Chem. Engng Sci. 29, 827–832.

    Google Scholar 

  • Sorensen, J. P. and Stewart, W. E.: 1974b, Computation of forced convection in slow flow through ducts and packed beds-IV. Convective boundary layers in cubic arrays of spheres, Chem. Engng Sci. 29, 833–837.

    Google Scholar 

  • van der Waarden, M., Bridie, A. L. A. M. and Groenewoud, W. M.: 1971, Transport of mineral oil components to groundwater-I. Model experiments on the transfer of hydrocarbons from a residual oil zone to trickling water, Water Res. 5, 213–226.

    Google Scholar 

  • Voudrias, E. A. and Yeh, M. F.: 1994, Dissolution of a toluene pool under constant and variable hydraulic gradients with implications for aquifer remediation, Ground Water 32(2), 305–311.

    Google Scholar 

  • Wagner, B. J.: 1992, Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling, J. Hydrol. 135(1-4), 275–303.

    Google Scholar 

  • Wakao, N. and Funazkri, T.: 1978, Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: Correlation of Sherwood numbers, Chem. Engng Sci. 33, 1375–1384.

    Google Scholar 

  • Wheatcraft, S. W. and Winterberg, F.: 1985, Steady state flow passing through a cylinder of permeability different from the surrounding medium, Water Resour. Res. 21(12), 1923–1929.

    Google Scholar 

  • Williamson, J. E., Bazaire, K. E. and Geankoplis, C. J.: 1963, Liquid-phase mass transfer at low Reynolds numbers, Ind. Engng Chem. Fundamentals 2(2), 126–129.

    Google Scholar 

  • Wilson, E. J. and Geankoplis, C. J.: 1966, Liquid mass transfer at very low reynolds numbers in packed beds, Ind. Engng Chem. Fundamentals 5(1), 9–14.

    Google Scholar 

  • Yalkowsky, S. H. and Valvani, S. C.: 1979, Solubilities and partitioning. 2. Relationships between aqueous solubilities, partition coefficients, and molecular surface area of rigid aromatic hydrocarbons, J. Chem. Engng Data 25, 127–129.

    Google Scholar 

  • Yalkowsky, S. H., Valvani, S. C. and Amidon, G. L.: 1976, Solubility of nonelectrolytes in polar solvents. IV. Nonpolar drugs in mixed solvents, J. Pharmacol. Sci. 65, 1488–1494.

    Google Scholar 

  • Yeh, W. W-G.: 1986, Review of parameter identification procedures in groundwater hydrology: The inverse problem, Water Resour. Res. 22(2), 95–108.

    Google Scholar 

  • Yeom, I. T., Ghosh, M. M. and Cox, C. D.: 1996, Kinetic aspects of surfactant solubilization of soil-bound polycyclic aromatic hydrocarbons, Environ. Sci. Technol. 30(5), 1589–1595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khachikian, C., Harmon, T.C. Nonaqueous Phase Liquid Dissolution in Porous Media: Current State of Knowledge and Research Needs. Transport in Porous Media 38, 3–28 (2000). https://doi.org/10.1023/A:1006667318234

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006667318234

Navigation