Skip to main content
Log in

Large alkyl side-chains of isoleucine and leucine in the NPIRL region constitute the core of the vacuolar sorting determinant of sporamin precursor

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The N-terminal propeptide of the sporamin precursor contains vacuolar targeting information within the Asn-26/Pro-27/Ile-28/Arg-29/Leu-30 (NPIRL) sequence. An Agrobacterium-mediated transient expression assay with tobacco BY-2 cells was employed to investigate the role of each amino acid of the NPIRL region in vacuolar targeting. Replacement of Asn-26, Pro-27, Ile-28 and Leu-30 with several amino acids caused secretion of the mutant prosporamin. Leu was the only amino acid that could be substituted for Ile-28 without affecting transport. Exchange of Leu-30 for amino acids with small side-chains abolished vacuolar delivery. These results indicate that the consensus composition of the NPIRL sequence is [preferably Asn]-[not acidic]-[Ile or Leu]-[any amino acid]-[large and hydrophobic] and suggest that the large alkyl side-chains of Ile-28 and Leu-30 constitute the core of the vacuolar sorting determinant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, S.U., Bar-Peled, M. and Raikhel, N.V. 1997. Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol. 114: 325–336.

    PubMed  Google Scholar 

  • Bednarek, S.Y. and Raikhel, N.V. 1991. The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants. Plant Cell 3: 1195–1206.

    Article  PubMed  Google Scholar 

  • Di Sansebastiano, G.-P, Paris, N., Marc-Martin, S. and Neuhaus, J-M. 1998. Specific accumulation of GFP in a non-acidic vac-uolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J. 15: 449–457.

    PubMed  Google Scholar 

  • Dombrowski, J.E., Schroeder, M.R., Bednarek, S.Y. and Raikhel, N.V. 1993. Determination of the functional elements within the vacuolar targeting signal of barley lectin. Plant Cell 5: 587–596.

    PubMed  Google Scholar 

  • Frigerio, L., de Virgilio, M., Prada, A., Faoro, F. and Vitale, A. 1998. Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide. Plant Cell 10: 1031–1042.

    PubMed  Google Scholar 

  • Gomord, V., Denmat, L., Fitchette-Lainé, A.C., Satiat-Jeunemaitre, B., Hawes, C. and Faye, L. 1997. The C-terminal HDEL se-quence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J. 11: 313–325.

    PubMed  Google Scholar 

  • Hattori, T., Ichihara, S. and Nakamura, K. 1987. Processing of a plant vacuolar protein precursor in vitro. Eur. J. Biochem. 166: 533–538.

    PubMed  Google Scholar 

  • Hattori, T., Yoshida, N. and Nakamura, K. 1989. Structural relation-ship among the members of a multigene family coding for the sweet potato tuberous root storage protein. Plant Mol. Biol. 13: 563–572.

    PubMed  Google Scholar 

  • Hinz, G., Hillmer, S., Bäumer, M. and Hohl, I. 1999. Vacuolar storage proteins and the putative vacuolar sorting receptor BP-80 exit the Golgi apparatus of developing pea cotyledons in different transport vesicles. Plant Cell 11: 1509–1524.

    PubMed  Google Scholar 

  • Holwerda, B.C., Padgett, H.S. and Rogers, J.C. 1992. Efficient vac-uolar targeting of proaleurain is mediated by interaction of short contiguous peptide determinants. Plant Cell 4: 307–318.

    Google Scholar 

  • Hong, E., Davidson, A.R. and Kaiser, C.A. 1996. A pathway for targeting soluble misfolded proteins to the yeast vacuole. J. Cell Biol. 135: 623–633.

    PubMed  Google Scholar 

  • Ishikawa, A., Ohta, S., Matsuoka, K., Hattori, T. and Naka-mura, K. 1994. A family of potato genes that encode Kunitz-type proteinase inhibitors: structural comparison and differential expression. Plant Cell Physiol. 35: 303–312.

    PubMed  Google Scholar 

  • Kirsch T., Paris N., Butler J.M., Beevers L., and Rogers J.C. 1994 Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc. Natl. Acad. Sci. USA 91: 3403–3407.

    PubMed  Google Scholar 

  • Kirsch T., Saalbach G., Raikhel N.V., and Beevers L. 1996. Interac-tion of a potential vacuolar targeting receptor with amino-and carboxyl-terminal targeting determinants. Plant Physiol. 111: 469–474.

    PubMed  Google Scholar 

  • Koide, Y., Hirano, H., Matsuoka, K. and Nakamura, K. 1997. The N-terminal propeptide of the precursor to sporamin acts as a vacuole-targeting signal even at the C terminus of the mature part in tobacco cells. Plant Physiol. 114: 863–870.

    PubMed  Google Scholar 

  • Koide, Y., Matsuoka, K., Ohto, M-a, and Nakamura, K. 1999. The N-terminal propeptide and the C-terminus of the precursor to 20 kilo-dalton potato tuber protein can function as different types of vacuolar sorting signal. Plant Cell Physiol. 40: 1152–1159.

    PubMed  Google Scholar 

  • Matsuoka, K. and Bednarek, S.Y. 1998. Protein transport within the plant cell endomembrane system: an update. Curr. Opin. Plant Biol. 1: 463–469.

    PubMed  Google Scholar 

  • Matsuoka, K. and Nakamura, K. 1991. Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc. Natl. Acad. Sci. USA 88: 834–838.

    PubMed  Google Scholar 

  • Matsuoka, K. and Neuhaus, J.-M. 1999. Cis-element of targeting to the vacuole. J. Exp. Bot. 50: 165–174.

    Google Scholar 

  • Matsuoka, K., Matsumoto, S., Hattori, T., Machida, S. and Nakamura, K. 1990. Vacuolar targeting and post-translational processing of the precursors to the sweet potato tuberous root storage protein in heterologous plant cells. J. Biol. Chem. 265: 19750–19757.

    PubMed  Google Scholar 

  • Matsuoka, K., Bassham, D.C., Raikhel, N.V. and Nakamura, K. 1995a. Different sensitivity to wortmannin of two vacuolar sort-ing signals indicates the presence of distinct sorting machineries in tobacco cells. J. Cell Biol. 6: 1307–1318.

    Google Scholar 

  • Matsuoka, K., Watanabe, N. and Nakamura, K. 1995b. O-glycosylation of a precursor to a sweet potato vacuolar protein, sporamin, expressed in tobacco cells. Plant J. 8: 877–889.

    PubMed  Google Scholar 

  • Matsuoka, K., Higuchi, T., Maeshima, M. and Nakamura, K. 1997. A vacuolar-type H C-ATPase in a nonvacuolar organelle is re-quired for the sorting of soluble vacuolar protein precursors in tobacco cells. Plant Cell 9: 533–535.

    PubMed  Google Scholar 

  • Melchers, L.S., Sela-Buurlage, M.B., Vloemans, S.A., Woloshuk, C.P., van Roekel, J.S.C., Pen, J., van den Elzen, P.J.M. and Cornelissen, B.J.C. 1993. Extracellular targeting of the vacuo-lar tobacco proteins AP24, chitinase and _-1,3-glucanase in transgenic plants. Plant Mol. Biol. 21: 583–593.

    PubMed  Google Scholar 

  • Miller, E.H., Lee, M.C.S. and Anderson, M.A. 1999. Identification and characterization of a prevacuolar compartment in stigmas of Nicotiana alata. Plant Cell 11: 1499–1508.

    PubMed  Google Scholar 

  • Nakamura, K. and Matsuoka, K. 1993. Protein targeting to the vacuole in plant cells. Plant Physiol. 101: 1–5.

    PubMed  Google Scholar 

  • Nakamura, K., Matsuoka, K., Mukumoto, F. and Watanabe, N. 1993. Processing and transport to the vacuole of a precursor to sweet potato sporamin in transformed tobacco cell line BY-2. J. Exp. Bot. 44 (Suppl): 331–338.

    Google Scholar 

  • Neuhaus, J.-M. and Rogers, J.C. 1998. Sorting of proteins to vacuoles in plant cells. Plant Mol. Biol. 38: 127–144.

    PubMed  Google Scholar 

  • Neuhaus, J.-M., Sticher, L., Meins F, Jr. and Boller, T. 1991. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc. Natl. Acad. Sci. USA 88: 10362–10366.

    PubMed  Google Scholar 

  • Neuhaus, J.-M., Pietrzak, M. and Boller, T. 1994. Mutational analysis of the C-terminal vacuolar targeting peptide of tobacco chitinase: low specificity of the sorting system, and gradual transition between intracellular retention and secretion into the extracellular space. Plant J. 5: 45–54.

    PubMed  Google Scholar 

  • Ohta, S., Mita, S., Hattori, T. and Nakamura, K. 1990. Construction and expression in tobacco of a _-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol. 31: 805–813.

    Google Scholar 

  • Okamoto, T. and Minamikawa, T. 1999. Molecular cloning and characterization of Vigna mungo processing enzyme 1 (VmPE-1), an asparaginyl endopeptidase possibly involved in post-translational processing of a vacuolar cysteine endopeptidase (SH-EP). Plant Mol. Biol. 39: 63–73.

    PubMed  Google Scholar 

  • Okita, T.W. and Rogers, J.C. 1996. Compartmentalization of pro-teins in the endomembrane system of plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 327–350.

    PubMed  Google Scholar 

  • Paris, N., Stanley, C.M., Jones, R.L. and Rogers, J.C. 1996. Plant cells contain two functionally distinct vacuolar compartments. Cell 85: 563–572.

    PubMed  Google Scholar 

  • Paris, N., Rogers, S.W., Jiang, L., Kirsch, T., Beevers, L., Phillips, T.E. and Rogers, J.C. 1997. Molecular cloning and further char-acterization of a probable plant vacuolar sorting receptor. Plant Physiol. 115: 29–39.

    PubMed  Google Scholar 

  • Robinson, D.G., Bäumer, M, Hinz, G. and Hohl, I. 1998. Vesicle transfer of storage proteins to the vacuole: the role of the Golgi apparatus and multivesicular bodies. J. Plant Physiol. 152: 659–667.

    Google Scholar 

  • Saalbach, G., Jung, R., Kunze, G., Saalbach, I., Adler, K. and Müntz, K. 1991. Different legumin protein domains act as vacuolar targeting signals. Plant Cell 3: 695–708.

    Article  PubMed  Google Scholar 

  • Saalbach, G., Rosso, M. and Schumann, U. 1996. The vacuolar targeting signal of the 2S albumin from Brazil nut resides at the C terminus and involves the C-terminal propeptide as an essential element. Plant Physiol. 112: 975–985.

    PubMed  Google Scholar 

  • Sanderfoot, A.A., Ahmed, S.U., Marty-Mazars, D., Rapoport, I., Kirchhausen, T., Marty, F. and Raikhel, N.V. 1998. A putative vacuolar cargo receptor partially colocalizes with AtPEP12p on a prevacuolar compartment in Arabidopsis roots. Proc. Natl. Acad. Sci. USA 95: 9920–9925.

    PubMed  Google Scholar 

  • Schroeder, M.R., Borkhsenious, O.N., Matsuoka, K., Nakamura, K. and Raikhel, N.V. 1993. Colocalization of barley lectin and sporamin in vacuoles of transgenic tobacco plants. Plant Physiol 101: 451–458.

    PubMed  Google Scholar 

  • Shimada, T., Kuroyanagi, M., Nishimura, M. and Hara-Nishimura, I. 1997. A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol. 38: 1414–1420.

    PubMed  Google Scholar 

  • van Voorst, F., Kielland-Brandt, M.C. and Winther, J.R. 1996. Mutational analysis of the vacuolar sorting signal of procar-boxypeptidase Y in yeast shows a low requirement for sequence conservation. J. Biol. Chem. 271: 841–8460.

    PubMed  Google Scholar 

  • von Schaewen, A. and Chrispeels, M.J. 1993. Identification of vac-uolar sorting information in phytohemagglutinin, an unprocessed vacuolar protein. J. Exp. Bot. 44 (Suppl): 339–342.

    Google Scholar 

  • Watanabe, H., Abe, K., Emori, Y., Hosoyama, H. and Arai, S. 1991. Molecular cloning and gibberellin-induced expression of multi-ple cysteine proteinases of rice seeds (oryzains). J. Biol. Chem. 266: 16897–16902.

    PubMed  Google Scholar 

  • Yoshioka, Y., Takahashi, Y., Matsuoka, K., Nakamura, K., Koizumi, J., Kojima, M. and Machida, Y. 1996. Transient gene expression in plant cells mediated by Agrobacterium tumefaciens: applica-tion for the analysis of virulence loci. Plant Cell Physiol. 37: 782–789.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, K., Nakamura, K. Large alkyl side-chains of isoleucine and leucine in the NPIRL region constitute the core of the vacuolar sorting determinant of sporamin precursor. Plant Mol Biol 41, 825–835 (1999). https://doi.org/10.1023/A:1006357413084

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006357413084

Navigation